
© 2002-2013 ICEAA. All rights reserved.

v1.2

1

Special Topics in Software

Estimation
Software Cost Estimating for

Iterative/ Incremental
Development Programs
Agile Cost Estimating

© 2002-2013 ICEAA. All rights reserved.

v1.2

Outline

• Part I:
– Software project estimation using functional size

– Software projects

– Software size

– Software project estimation based on functional size

– Historical data and ISBSG

– Conclusions

• Part II:
– Iterative and Incremental Development (IID)

Programs

– Agile Software Development Processes

– Issues for Program Managers

– Software Estimating Process

– Summary
2

© 2002-2013 ICEAA. All rights reserved.

v1.2

PART I

Unit IV - Module 12 3

© 2002-2013 ICEAA. All rights reserved.

v1.2

The problem

Special Topics in software estimation 4

© 2002-2013 ICEAA. All rights reserved.

v1.2

Software Industry

5

• Software project industry: low maturity
- Low estimation maturity

- No or little formal estimation processes

- No or little use of historical data

- Customers chose suppliers based on price, not reality

• Lots of schedule and cost overruns
- Standish Chaos reports: Most projects fail or are at least unsuccessful

• Low customer satisfaction rates
- In Europe: only slightly higher than the financial sector

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Two main reasons

• Unstable user requirements

– Starting the development too early in the project

– Not enough time spent on requirements analysis

– Users not involved or not involved enough

• Unrealistic project expectations

– Usually: only expert estimates (optimistic)

– Pressure to lower cost and deliver faster

– End date is not estimated, but a given

• Duration is an important cost driver!

6Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Requirements

• Worst in class software development organizations

spend 7,5% of the project budget on requirements

• Best in class software development organizations

spend 28% of the project budget on requirements

• More effort spent on requirements increases project

success!

7

Coding and TestingReq.

Req. Coding and testing

1,5 hours/FP 17,5 hours/FP

3,0 hours/FP 7,7 hours/FP

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unrealistic expectations

• Many projects are not estimated in a professional way

– Only expert estimates, no use of estimation models / historical

data

• Underestimation results in bad planning

– Development team too small

– Duration too short

– Unrealistic milestones

– Project management with no grip on the project

– Extra management attention, more meetings

– Stress in the team  bad quality  more effort

– Bad software, low maintainability

8Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Why a realistic estimate?

Non-linear extra costs

-Planning errors

-team enlargement more expensive, not faster

-Extra management attention / overhead

-Stress: More defects, lower maintainability !!

Linear extra costs

Extra hours will be used

© 2002-2013 ICEAA. All rights reserved.

v1.2

Realistic estimates

• Use multiple estimation methods:

– Expert estimates (bottom up)

– Parametric estimates (bottom up)

– Challenge / Comparison

• All estimates should be expressed in ranges!

– Low: 20000 hours / Likely 30000 hours / Max: 45000 hours

• Reality check the estimates (own history / ISBSG)

– Hours per 1000 slocs

– Hours per function point

• Document/Baseline the Estimate

– Basis of Estimate (BoE)

– AACE recommended practice 74R-13

10Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Realistic estimates, why not?

IT industry – estimates are too optimistic

– Business/customer: pressure to lower price;

– Business/customer: pressure shorter time-to-market;

– Business/customer: incomplete requirements

– Business/customer: early fixed price/date quote

IT supplier

– Unclear what customer wants;

– Immature estimation techniques (only expert estimates);

– No idea about own performance and capabilities;

– Not defendable  easy to push back

Optimistic estimates are more rule than exception

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Why Size Matters

• Effort & schedule vary in

proportion to size (but not linearly!)

• Knowing size allows estimators to

determine effort (cost) & schedule

• Better size estimates = better effort

& schedule estimates

• Software Size is the main driver of
software development effort, cost,
and schedule -- use the best
available estimate of size, and use
a range!

Size - Schedule

0

20,000

40,000

60,000

80,000

100,000

120,000

1 2 3 4 5

Observation

S
L

O
C Size

Schedule (x 1000)

Size - Effort

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

1 2 3 4 5

Observation

S
L

O
C

 &
 H

o
u

rs

Size (SLOC)
Effort (Hours)

© 2002-2013 ICEAA. All rights reserved.

v1.2

Software Size

• Software size is the key input parameter for most

estimation models

• In practice: hard to measure upfront. Not tangible

• Main types of software size:

– Technical size, e.g. slocs, MB’s, etc.

– Functional size, e.g. function points, COSMIC FP

• Technical size must be estimated / guessed

• Functional size can be measured, if the functional

requirements are known

13Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Technical Size

• Most often used: source lines of code (slocs)

– ‘Easy’ to measure after completion

– More slocs is better?

– Less slocs is better?

– Does a price or a quote of a price per 1000 slocs make sense?

• Slocs can be used in some models, like COCOMO

• But size in slocs can’t be measured, only guessed

• Slocs are different between languages

• Slocs are different between code counting tools

• Result: the estimates based on slocs are probably not

very accurate

14Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Functional size

• Can be used early in the project, when functional

requirements are known

• ISO standard measurement method to size the

functional requirements (what does the software for

the user):

– IFPUG Function points

– NESMA Function points

– COSMIC Function points

• Objective, verifiable, repeatable, defensible !!

• Independent of the business or systems requirements

• More function points means more functionality: value!

15Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Functional Size Measurement

• Measurement of the functional user requirements of a

piece of software

- What should the software do for the user?

- Not ’how’ or ‘why’

- Result: size of the software: number of function points (FP)

• Purposes:

- Software Project estimation

- Project Performance measurement

- Scope management

- Project Benchmarking

- RFP Management: contracting ‘price/FP’

16Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Functional Size Measurement Methods

17Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Estimation models

• Models that use functional size:

– Galorath SEER-SEM

– QSM SLIM

– Price Systems – Trueplanning

– Many more

• Parametric models are necessary for project

estimation

– To use historical data in new estimates

– To understand the uncertainties and risk

– To build scenarios

– Communication to stakeholders

– Non-linear influences of cost drivers

18Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Basic estimation model

19

measures

risk analysis

risks

consequences

size

hours/cost
(provisional)

hours/cost
(attuned)

influences

productivity

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Effort / duration tradeoff

20

E
ff

o
rt

 o
r

C
o

s
t

Duration

Impossible

zone

Impractical

zone

Minimal duration /
highest effort and cost

Optimal duration /
lowest effort and cost

Realistic

zone

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Example

21

P
ri

c
e

/F
P

Duration (months)

Impossible

zone

Impractical

zone

Minimal duration /
highest effort and cost

Optimal duration /
lowest effort and cost

Realistic

zone

1000

500

6 12

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Historical data

• Parametric estimation models need historical data to estimate

• Preferred for estimation: data of the company itself

• For new types of projects or no data available: Industry data

can be used

• Sources of industry data:

– Data delivered with the models mentioned

• QSM SLIM: trendlines based on slocs or FP

• SEER-SEM: knowledge bases

– Data by Benchmarking suppliers (Gartner, DCG, etc.)

– Independent (International Software Benchmarking Standards Group)

22Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

• International Software Benchmarking Standards Group

• Independent and not-for-profit;

• Full Members are non-profit organizations, like IFPUG, NESMA,

GUFPI-ISMA, FiSMA, QESP, DASMA, JFPUG, Swiss-ICT and

CESI;

• Associate members: AEMES (Asociacion Espanola de Metricas de

Software), ASSEMI (France);

• Grows and exploits two open repositories of software data (.xls):

– New development projects and enhancements (> 6000 projects);

– Maintenance and support (> 1200 applications).

• Everybody can submit project data

– DCQ on the site / on request (.xls)

– Anonymous

– Free benchmark report in return

ISBSG

© 2002-2013 ICEAA. All rights reserved.

v1.2

• Mission: “To improve the management of IT resources by both

business and government, through the provision and

exploitation of public repositories of software engineering

knowledge that are standardized, verified, recent and

representative of current technologies”.

• All ISBSG data is

– validated and rated in accordance with its quality guidelines

– current

– representative of the industry

– independent and trusted

– captured from a range of organization sizes and industries

ISBSG

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Example: reality check

• A telecom company wished to develop a new Java system for

the maintenance of subscription types;

• A team of experts studied the requirements documents and

filled in the WBS-based estimation calculation (bottom-up

estimate);

• They decide that an estimate of 5500 hours and a duration of

6 months should be feasible;

• The project manager decided not to believe the experts ‘on

their blue eyes’ only and wished to carry out a reality check.

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Reality Check: Effort

• An estimated FPA comes up with the expected size:

– Min: 550 FP, likely 850 FP, Max 1300 FP

– Implicit likely expert PDR: 5.500/850 = 6.5 h/FP

• Selecting the most relevant projects in the ISBSG D&E

repository show the next results:

PDR (h/FP)

Min. 3,2

Percentile 10% 4,3

Percentile 25% 6,2

Median 8,9

Percentile 75% 12,9

Percentile 90% 19,8

Max. 34,2

N 89

PDR (h/FP)

Min. 3,2

Percentile 10% 4,3

Percentile 25% 6,2

Median 8,9

Percentile 75% 12,9

Percentile 90% 19,8

Max. 34,2

N 89

550 850 1300

3.410 5.270 8.060

4.895 7.565 11.570

7.095 10.965 16.770

Functional Size

550 850 1300

3.410 5.270 8.060

4.895 7.565 11.570

7.095 10.965 16.770

Functional Size

5.500 hours
seems optimistic

Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Reality Check: Duration
• Same analysis is possible

• Also, formulas have been published in the Practical Project

Estimation book

• For instance:

table C-2.2 Project Duration, estimated from software size only

Functionele omvang 550 FP

C uit tabel 0,507

E1 uit tabel 0,429

Duration = C * Size^E1

Duration = 7,6 elapsed months

550 850 1300

Duration 7,6 9,2 11,0
Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Results

• Expert estimate was assessed optimistic

• Adjusted Estimate:

– Effort: 8000 hours

– Duration: 10 months

• This turned out to be quite accurate! Without the

adjustment, the project probably would have failed.

• The project manager now always carries out reality checks

and is ‘spreading the word’.

28Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

Conclusions Part I

• Many software projects fail due to bad estimation practices;

• Estimates based on functional size are likely to be most

accurate, because they are based on past performance data

and objective measurement;

• Parametric estimation models are needed to understand the

risks and to calculate scenarios;

• The availability of historical data is essential to all types of

estimation!

29Special Topics in software estimation

© 2002-2013 ICEAA. All rights reserved.

v1.2

PART II

Unit IV - Module 12 30

© 2002-2013 ICEAA. All rights reserved.

v1.2

Software Development

• While there are many approaches to

Software Development, they can

generally be placed into 2 categories:
• Plan Driven – following a version of the Waterfall Development

Process

• Iterative Driven – following a version of the Agile Development

Process

– Plan Drive programs have an assumption of some

reliable/realistic size metric, for example:

• Source Lines of Code (SLOC)

• Function Points

• Use Cases, etc.

31

© 2002-2013 ICEAA. All rights reserved.

v1.2

Software Development

– Iterative Drive programs, by nature, start with a less well-

defined metric

• Therefore, they may require alternative estimating approaches

– This briefing will focus on the challenges of estimating an

iterative program using Agile software development

– In practical experience the terms iterative, incremental and

agile may be used interchangably

While Incremental/Agile programs say they do not have

development metrics, I have almost always found them in the

development room

32

© 2002-2013 ICEAA. All rights reserved.

v1.2

IID Programs’ Key Terms

• IID is an approach to building software

in which the overall lifecycle is

composed of iterations or sprints in

sequence
• Each Iteration is a self-contained mini project

• It grew out of the increased application of Agile Development

techniques

– In many defense programs, increments are 6 -12 months

in length and each increment is composed of multiple

iterations/sprints of 1-6 weeks

– Time-boxing is the practice of fixing the iteration or

increment dates and not allowing it to change

– This approach is gaining favor in large federal programs
33

1

© 2002-2013 ICEAA. All rights reserved.

v1.2

Each Iteration/Sprint is a Mini Project

• Each iteration/sprint includes production-quality

programming, not just, for example,

requirements analysis
• The software resulting from each iteration/sprint is not a prototype or

proof of concept, but a subset of the final system

– More broadly, viewing an iteration as a self-contained mini

project, activities in many disciplines (requirements analysis,

testing, etc.) occur within a single iteration

34

1

2

© 2002-2013 ICEAA. All rights reserved.

v1.2

IID

• Although IID is in the ascendency today,

it is not a new idea
• 1950s “stage-wise Model” – US Air Defense SAGE Project

• IBM created the IID method of Integration Engineering in the 1970s

– IID Programs tend to be less structured in the beginning,

and therefore reliable estimates of cost and schedule may

not be available until 10-20% of the project is complete

(in a recent program I saw a cost variance during the first 4

increments of 45% per size metric)

– The current emphasis on agile software development

processes maps directly into the IID Concept

35

4

© 2002-2013 ICEAA. All rights reserved.

v1.2

Typical IID Problems – SLOC Count

36

Code Counting Organization and SLOC Counts

UCC Categories Contractor Categories

Support

Contractor

2011

Support

Contractor

2012

Development

Contractor

2011

Government

2011

Government

2012

Common 2,395 2,451 - - -

Connectors. Connectors 52,511 34,012 70,385 55,438 27,627

Feature Packages Feature Packages 5,887 8,173 49,277 7,468 18,836

Core Infrastructure Core Infrastructure 36,133 19,276 162,011 461 211,228

Information Services Information Services 23,245 - 11,432 25,256 -

Presentation Presentation Infrastructure 14,523 - - 51,813 -

Tools 35,743 - - 1,813,456 1,813,948

Task Services - - - - -

In-House Dev In-House Dev - - 1,852,357 -

Total 170,437 63,912 293,105 3,806,249 2,071,639

Through analysis, we were able to somewhat reconcile these large
differences

© 2002-2013 ICEAA. All rights reserved.

v1.2
Typical IID Problems (continued)– Gathering

Historic Data

37

Estimated S/W Development Costs through the Completion of “X” Increments

Contractor 1 Contractor 2 In-House

Increment
Development

Agile
Development

Increment
Development

Agile
Development

Increment
Development

Agile
Development Totals

Inc a. $ 411,600 $ - $ 411,600 $ - $ 100,000 $ - $ 923,200

Inc b $ 1,032,402 $ - $ 1,108,939 $ - $ 100,000 $ - $ 2,241,341

Inc c $ 1,711,706 $ 538,398 $ 1,664,882 $ 296,508 $ 549,322 $ 218,400 $ 4,979,216

Inc c Ext 1 $ - $ 812,672 $ - $ - $ - $ - $ 812,672

Inc c, Ext 2 $ - $ 186,242 $ - $ - $ - $ - $ 186,242

Totals $ 3,155,708 $ 1,537,312 $ 3,185,421 $ 296,508 $ 749,322 $ 218,400 $ 9,142,671

Software Maintenance as a % of Develoment Costs

Factor Annual Maint. $/FTE FTEs *

Low 5% $ 457,134 $ 213,600 3

Most Likely 10% $ 914,267 $ 179,412 6

High 13% $ 1,188,547 $ 155,141 8

One could
suggest that
these problems
are common to
all Software
Intensive
Programs

© 2002-2013 ICEAA. All rights reserved.

v1.2

What is Agile Software Development?

• In the late 1990s, several methodologies

received increasing public attention

• Each had a different combination of old, new,

and transmuted old ideas, but they all

emphasized:
• Close collaboration between the programmer and business experts

• Face-to-face communication (as more efficient than written

documentation)

• Frequent delivery of new deployable business value

• Tight, self-organizing teams

• And ways to craft the code and the team such that the inevitable

requirements churn was not a crisis

38

5

© 2002-2013 ICEAA. All rights reserved.

v1.2

Manifesto for Agile Software Development

39

• “We are uncovering better ways of developing

software by doing it and helping others do it

• Through this work, we have come to value:
• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

• That is, while there is value in the items on the right, we value the

items on the left more”

6

© 2002-2013 ICEAA. All rights reserved.

v1.2

Principles behind the Manifesto

• Principles of Agile Developers:
• Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software

• Welcome changing requirements, even late in development

– Agile processes harness change for the customer’s

competitive advantage

• Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale

• Business people and developers must work together daily

throughout the project

• Build projects around motivated individuals

– Give them the environment and support they need, and

trust them to get the job done

• Working software is the primary measure of progress

40

7

© 2002-2013 ICEAA. All rights reserved.

v1.2

Principles behind the Manifesto

• Principles of Agile Developers

(continued):
• The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation

• Agile processes promote sustainable development

– The sponsors, developers, and users should be able to

maintain a constant pace indefinitely

• Continuous attention to technical excellence and good design

enhances agility

• Simplicity, the art of maximizing the amount of work not done, is

essential

• The best architectures, requirements, and designs emerge from

self-organizing teams

• At regular intervals, the team reflects on how to become more

effective, then tunes and adjusts its behavior accordingly

41

8

© 2002-2013 ICEAA. All rights reserved.

v1.2

Common Myths about Agile

42

Myth Reality

Silver bullet / magic Actually very hard work!

Has no planning / documentation /

architecture

Just the minimum possible

Is undisciplined or a license to hack Disciplined, business driven work

Is new and unproven / just a fad / not

being used by industry leaders

Not anymore. Many large and small

organizations using it

Only good for small projects Also used successfully on medium

and large projects

© 2002-2013 ICEAA. All rights reserved.

v1.2

Differences of Agile and Non-Agile

• Recent observations regarding the utilization of Agile

development approaches within the Federal

Government:
• May work best when the project is more requirements-driven than schedule-driven

• Beginning to see common usage in Department of Defense (DoD) unclassified (e.g. Marine

Corps) and classified programs (e.g. Naval Reconnaissance Office [NRO])

43

Agile Non-agile

Prioritize by value Prioritize by dependency

Self-organizing teams Managed resources the minimum

possible

Team focus Project focus

Evolving requirements Frozen requirements

Change is natural Change is risky

© 2002-2013 ICEAA. All rights reserved.

v1.2

Differences of Agile and Non-Agile

• Recent observations regarding the

utilization of Agile development

approaches within the Federal

Government (continued):
• Being talked about within emerging National Aeronautics and

Space Administration (NASA) projects

• Being used in DHS

• It sounds very much like what we called “rapid prototyping”

• More common than is being recognized

44

© 2002-2013 ICEAA. All rights reserved.

v1.2

Welcome to Agile

• What is an agile development

approach?

• Depends on the flavor:
• Agile Modeling

• Lean Development (LD)

• Adaptive Software Development (ASD)

• Exia Process (ExP)

• Scrum

• eXtreme Programming (XP)

• Crystal methods

• Evolutionary – EVO

• Feature Driven Development (FDD)

• Dynamic Systems Development Method (DSDM)

• Various Unified Processes (UP): agile, essential, open

• Velocity tracking, and more!

45

© 2002-2013 ICEAA. All rights reserved.

v1.2

What do they have in common?

• Agile projects are focused on key business values

• What does the client really, really, really want?

• Deliver what the client wants at the end of the project, not

what the client wanted at the beginning of the project

• They all contain a project initiation stage (aka planning)

• Project scope, constraints, objectives, risks are all officially

documented

• Short (very short) development of chunks of

features/stores/requirements/needs/desires (aka sprints)

• Constant feedback

• The one place where we can actually find short meetings

• Customer participation is MANDATORY or no-go!

• Refactoring; as in, do it again and this time get it right, or better

46

© 2002-2013 ICEAA. All rights reserved.

v1.2

The Agile Paradigm Shift

47

9

© 2002-2013 ICEAA. All rights reserved.

v1.2

What do the Models Say?

48

10

What is driving these “apparent” reductions?

© 2002-2013 ICEAA. All rights reserved.

v1.2

Other Current Research
Empirical evidence indicates development costs may be reduced by 10 to

20 percent for Iterative Driven Programs. In a “The Raytheon Agile

Journey” a presentation by Cindy Molin (Director, SW Engineering) and

Katherine (K) Sementilli (Deputy, SW Engineering), Raytheon Missile

Systems on June 22, 2012 the following efficiencies based on agile

development are observed (based on over 250 projects and over 5 million

ELOCs):

Agile Development Results

• 20% of Raytheon SW Engineering Development Productivity

• 25% productivity increase Agile vs Non-Agile

• 10% variability reduction Agile vs Non-Agile

• 50% faster for Agile vs Non-Agile

• Time on task for an average work day 30% more for Agile vs

Non-Agile

49

© 2002-2013 ICEAA. All rights reserved.

v1.2

Scrums and Sprints

• Scrum Size:

• 1-10 people (have seen up to

20)

– Sprint Length:

• 1-6 weeks (have seen up to

13 weeks) (13 conveniently
give 4 sprints per year)

– Story Points* per Sprint:

• 6-9 Story Points per Sprint

– There seems to be a real

avoidance of using

Function Points or SLOC

in many of these efforts.

(But trust me a size metric
exists somewhere within
the development
community)50

* I have Use Case, Feature Point, and other
metrics for specific agile development programs,
but I am not sure they are transferable

http://upload.wikimedia.org/wikipedia/commons/0/0b/Rugby_union_scrummage.jpg
http://upload.wikimedia.org/wikipedia/commons/0/0b/Rugby_union_scrummage.jpg

© 2002-2013 ICEAA. All rights reserved.

v1.2

Four Estimating Processes

• Process 1: Simple Build-up approach

based on averages can be defined as:
• Sprint Team Size (SS) x Sprint length (Sp time) x Number of Sprints

(# Sprints)

• Process 2: Structured approach based on established

“velocity” – most often used internally by the developer

since detailed/sensitive data are available to them

• Process 3: Automated Models approach based on a size

metric – which may be difficult to quantify

• Process 4: Factor/Complexity approach based on data

generated in early iterations

51

© 2002-2013 ICEAA. All rights reserved.

v1.2

A Word About 2014 Rates

• Developers and Tester - $70 to $200

per hour, median team rate about $125

• Agile Coach - $100 to $200 per hour,

average about $150

• Business Analyst - $125

• Average Team Rate of about $115

WARNING: THESE ARE BROAD

AVERAGE I HAVE FOUND THIS YEAR

Unit IV - Module 12 52

© 2002-2013 ICEAA. All rights reserved.

v1.2

Process 1: Build-Up Approach

When a program is comprised completely of

agile sprints, we can use industry norms or

program plans to develop an estimate
• Process 1 is defined as:

• SS x Sp time x # Sprints

– SS (normally 1-10 people) x Sp time (normally 0.25 to 1.25

months) x # Sprints

– Frequently used by independent estimators since actual data

are often unavailable

– Remember to factor in time for demonstrations/user feedback

– Can develop a point estimate and a range

– Works well for small programs

The weakness of this approach is justifying the team size, number of

sprints, sprint length and total required to meet the requirement

53

© 2002-2013 ICEAA. All rights reserved.

v1.2Process 2: Structured Approach based on

“Velocity”

• Process 2 can be summarized by:

1. Express requirements in the same size metric used by the

developer; normally Features, Feature Points, Use Case Points,

Story Points, … What the size metric is unimportant as long as it is

consistently used across this program*

2. (optional). Use a process to rank the size metric: small, medium,

large using something like Fibonacci sequence, planning poker

3. Estimate and/or document the velocity (number of size metrics per

time period) at which the Agile team has worked

4. Estimate and/or document the historic cost per size metric for the

Agile team

5. Spread the sprints over time to develop time-phased estimate

* I would hope that over time we could develop standards for agile

development across the various size metrics and programs. However,

since these metric often do not conform to a “standard” this is an

elusive task. But an average over several early interactions may be

very accurate for a specific [program.
54

© 2002-2013 ICEAA. All rights reserved.

v1.2

What is a Use Case Point?
• A weighted count of actors and

use cases

• Actor weight is classified as:
– 1 – Simple: highly-defined and

elemental, such as a simple API call

– 2 – Average: protocol-driven interaction,

allowing some freedom

– 3 – Complex: potentially complex

interaction

– Use Case weight is classified

as:

• 5 – simple: 3 or fewer transactions

• 10 – average: 4-7 transactions

• 15 – Complex: more than 7

transactions

55

© 2002-2013 ICEAA. All rights reserved.

v1.2

Moving to Automated Models

• Step 5 of the previous slide suggested you

time-phase the Sprints
• When you do this, the results often resemble the Rayleigh Function

used in modern software models

56

• This observation leads to the third estimating process

http://en.wikipedia.org/wiki/Image:Rayleigh_distributionPDF.png
http://en.wikipedia.org/wiki/Image:Rayleigh_distributionPDF.png

© 2002-2013 ICEAA. All rights reserved.

v1.2

Process 3: Automated Model Approach

• The “Parameter” settings within

automated models can be adjusted to

estimate costs and schedule for

complex/large projects
• The “environmental factors” in SEER, PRICE, SLM, and COCOMO

II have been adjusted to reflect Agile practices and therefore

Iterative Development

• Remember, the size metric is still the key cost driver, which is even

less certain in agile programs than traditional ones

57

© 2002-2013 ICEAA. All rights reserved.

v1.2

Process 4: Factor/Complexity Approach

• In a normal IID program, the initial program

estimate must be based on broad parameters

with wide ranges – analogy to previous

programs and/or generic models

• Specific iterations/sprints can be estimated

using the agile estimating processes

previously presented

• The real question is: how do we estimate the

cost of future Increments (time boxes)?
• The following slides present Process 4 Factor/Complexity

Approach

58

© 2002-2013 ICEAA. All rights reserved.

v1.2

Process 4: Factor/Complexity Approach

• Step 1: Select a Baseline Increment (often the

last successful increment) for the program

• Step 2: Carefully analyze this baseline

increment – this analysis could be based on

SLOC, function points, features,

requirements, dollars, or some other metric

• Step 3: For each new increment, compare the

expected functionality and complexity of the

new increment to the baseline (or last

successful) increment
• Notional functional and complexity factors are presented on the next slide

59

© 2002-2013 ICEAA. All rights reserved.

v1.2

Process 4: Factor/Complexity Approach

60

Scale Functional Description Effort Multipliers

- - - Significantly less functionality to be delivered 0.5

- - Moderately less functionality to be delivered 0.7

- Slightly less functionality to be delivered 0.9

= Functionality equivalent to Increment X 1.0

+ Slightly more functionality to be delivered 1.3

+ + Moderately more functionality to be delivered 1.7

+ + + Significantly more functionality to be delivered 2.0

Scale Complexity Description Effort Multipliers

- - Significantly less complex 0.7

- Slightly less complex 0.9

= Complexity equivalent to Increment X 1.0

+ Slightly more complex 1.3

+ + Significantly more complex 1.7

• These initial set of factors came from the environmental factor from

traditional software cost models

• Step 4: Because each Increment is a mini project, use a Rayleigh or simple

Beta Curve (such as a 60/50 Beta curve) to phase costs

• However, do not be surprised if you encounter programs that are truly

operated and manages as Level of Effort (LOE)

© 2002-2013 ICEAA. All rights reserved.

v1.2

Process 4: Factor/Complexity Approach

• Step 5: The project can define the length

of each increment – likely between 4 and

14 months

61

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

Incremental Beta

Incremental Beta

© 2002-2013 ICEAA. All rights reserved.

v1.2

Issues for Project Management

• Cost and Schedule modelers usually want well-

defined program requirements and size metrics early

in the lifecycle – the nature of IID programs argues

against this
• IID programs tend to be less structured in the beginning, and therefore reliable

estimates of cost and schedule may not be available until 10-20% of the project is

complete

• Initial contracts tend to be Fixed Price or LOE
• This does not imply poor value to the project

• It does imply that key “value-added” metrics may not be identified or collected

• “Time Boxing” tends to resolve the individual

scheduling issues, but not the total program length

issue
• A specific cost estimating strategy is required to accurately plan for resources

62

11

© 2002-2013 ICEAA. All rights reserved.

v1.2

Issues for Project Management

• If a program has too many planned Increments (10 or

more), it may not be a well-defined program and

could spin out of control or just become an LOE

research project
• Establishing and monitoring metrics becomes critical

• “To be able to adopt an empirical approach to project

management and control, we must be able to

objectively demonstrate and measure how much

progress the project has made in each iteration
• Possible ways to measure progress include:

– Number of products and documents produced

– Number of lines of code produced

– Number of activities completed

– Amount of budget/schedule consumed

– Number of requirements verified to have been verified implemented

correctly”
63

12

© 2002-2013 ICEAA. All rights reserved.

v1.2

Schedule Analysis

• Due to the short length of increments (generally 9-12

months) and continuity between increments, phasing

the costs within a specific increment is less important

• However, the “million dollar questions” for

incremental and agile programs (where requirements

definition and documentation are less detailed, and

the development is more flexible/emergent) are:
• What will the program look like at Initial Operational Capability (IOC)?

• How many increments will it take?

• How long is each increment going to last?

• Cost estimators are going to have to adjust, and

examine these programs as a schedule analyst might

to produce credible lifecycle estimates

64

© 2002-2013 ICEAA. All rights reserved.

v1.2

Summary

• Fixed Price and/or LOE contracts in the early phases

should be written so that key “value-added” metrics

are collected and reported during each increment

• Estimators may have to employ a variety of software

estimating methodologies within a single estimate to

model the blended development approaches being

utilized in today’s development environments
• An agile estimating process can be applied to each iteration/sprint

• Future Increments can be estimated based on most recent/successful IID performance

• Cost estimators will have to scrutinize these

programs like a schedule analyst might to determine

the most likely IOC capabilities and associated date
• The number of increments are an important cost driver as well as an influential factor in

uncertainty/risk modeling

65

© 2002-2013 ICEAA. All rights reserved.

v1.2

Summary

• All of the estimation methods are

susceptible to error, and require

accurate historical data to be useful

within the context of the organization

• When developers and estimators use

the same “proxy” for effort, there is more

confidence in the estimate

66

© 2002-2013 ICEAA. All rights reserved.

v1.2

Recommended Reading

• “The Death of Agile” blog

• “Agile Hippies and The Death of the

Iteration” blog

67

5

© 2002-2013 ICEAA. All rights reserved.

v1.2

Endnotes

• 1, 2, 4, 10, 11: Larman, C. (2010). Agile and Iterative
Development: A Manager's Guide.

• 3: Kilgore, J. (2012). Senior Associate, Kalman &

Company, Inc.

• 5, 6, 7, 8: Agile Alliance. (2012). Agile Alliance.

Retrieved 2012, from http://www.agilealliance.org

• 9: Coaching, T. L. (n.d.). Rally Software Scaling

Software Agility.

• 12: Bittner, K., & Spence, I. (2006). Managing
Iterative Software Development Projects. Addison-

Wesley Professional.

68

http://www.agilealliance.org/

© 2002-2013 ICEAA. All rights reserved.

v1.2

Additional References

• Cohn, M. (2009). Succeeding with Agile Software
Development using Scrum.

• Dooley, J. (2011). Software Development and
Professional Practice.

• Gack, G. (2010). Managing the Black Hole.

• George, J., & Rodger, J. (2010). Smart Data
(Enterprise Performance Optimization Strategy).

• Royce, W., Bittner, K., & Perrow, M. (2009). The
Economics of Iterative Software Development:
Steering Towards Better Business Results. Addision

Wesley Professional.

• Smith, G., & Sidky, A. (2009). Becoming Agile in an
Imperfect World.

69

5

© 2002-2013 ICEAA. All rights reserved.

v1.2

Contact Information

• Dr. Harold van Heeringen
• Email: harold.van.heeringen@sogeti.nl

• @haroldveendam

• Bob Hunt
• Email: BHunt@Galorath.com

• Phone: 703.201.0651

70

mailto:harold.van.heeringen@sogeti.nl
mailto:BHunt@Galorath.com

