

From Aircraft Availability to FIFTY SHADES OF GREY WATER

18th October 2016 L.B.Newnes@Bath.ac.uk Professor Linda Newnes - University of Bath Dr Ettore Settanni - University of cambridge Mr Jon Wright - Wessex Water Mr David Peacock – Wessex Water

Overview

From defence to the water sector and beyond...

- Our approach Costing for Availability
- Why a systems based approach
- Defence application
- Waste Water application
- Wrap up

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016

COSTING FOR AVAILABILITY

Availability-based contracts

http://www.guernseymodelclub.com

http://www.defenseprocurementnews.com/

http://3.bp.blogspot.com

How availability can be interpreted

Reliability, Availability, Maintainability (RAM)

Based on: B. de Neumann, "Life Cycle Cost models," in *Electronic Systems Effectiveness and Life Cycle Costing*, J. K. Skwirzynski, Ed, Berlin Heidelberg: Springer-Verlag, 1983, pp. 513–532.

In reality this is what you get!

Picture subject to copyright will be included in presentation

© BAE Systems 2012

Often we use a 'product' attribute to estimate cost

Or detailed bottom-up/build-up approach

PSS

Aircraft availability provision

© BAE Systems 2012

Bottom-up

Derived from: Roskam, Jan (1990): Airplane Design: Part VIII (Part 8). Airplane Cost Estimation: Design, Development, manufacturing, and Operating. 8 volumes. Lawrence, Kansas, USA

Top-down & bottom-up are not always helpful!

Miró

Chant Du Rossignol à minuit et la pluie matinale (The Nightingale's Song at Midnight and the Morning Rain) Top-Down Top-Down

SYSTEMS APPROACH FROM CONCEPT TO END OF LIFE

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016

Different perspectives – so look at the system

Different perspectives on cost

Watchkeeper example*

programme. Flightglobal (Flight International). Available online at http://www.flightglobal.com/news/articles/uk-reveals-expenditure-ondelayed-watchkeeper-programme-380779/, checked on 1/8/2013.

Different perspectives on cost

Watchkeeper example

Comparison – Watchkeeper example

	Cost is an intrinsic	Cost results from cost drivers	Cost is an emergent
Delivery	A UAV design.	A certified UAS.	Tactical intelligence.
Origin of costs	Wing span or weight of the individual UAV.	Extended time for certification.	Activities necessary before, during and after deployment.
Possibilities to take action	Reduce UAV size.	Expedite certification.	Manage activities.

Delivering an outcome = deliver a system

Purposes of cost estimation

Source: Ellram (1996)

Using a systems approach

System Identification: What is the phenomenon we deal with ?

Interviews

http://images.eaa.org

Insight from people In the system

Document & reliability analysis

Review repair reports & appropriate data

Relevant System: Elements and Relationships

The relevant System: Elements & Relationships

Qualitative and Quantitative Modelling

Example results and context

Prevent Local Optimisation

Local optimisation on "servicing events"

Local optimisation on "repair events"

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016

TRANSFER APPROACH TO WATER SECTOR

Outcome-based approach in water sector

Outcome-based approach in water sector

Outcome-based approach in water sector

Source: Wessex Water Plc

Source: Wessex Water Plc

Source: Wessex Water Plc

Outcome-based approach in water sector

Source: Wessex Water Plc

Source: Wessex Water Plc

Source: MS Clipart

Our approach

Visualisation: water-related physical flows

Our approach

Visualisation: water-related physical flows

Our approach

Visualisation: economic flows

Suggested approach

Industrial Example

Application **Material-flow view**

- D: Remove solids through quiescent gravity settling Eastern works
- E: Remove organic matter by Activated Sludge Eastern works
- F: Remove solids through chemically-assisted primary settlement

G: Remove organic matter by Biological Aerated Flooded filters - BAFF

- K: Dewater and treat liquors
- L:Co-generate heat and power

Drainage service (m3)

Application 'Service'-provision view

- A: Screen and de-grit raw wastewater
- B: Remove solids through quiescent gravity settling Western works
- C: Remove organic matter by Activated Sludge Western works
- D: Remove solids through quiescent gravity settling Eastern works
- E: Remove organic matter by Activated Sludge Eastern works
- F: Remove solids through chemically-assisted primary settlement
- G: Remove organic matter by Biological Aerated Flooded filters BAFF

- H: Remove nutrients and pathogens
- I: Blend and thicken sludge
- J: Generate digester gas
- K: Dewater and treat liquors
- L:Co-generate heat and power

Application

Wastewater component concentration

Application Catchment-level management?

Wrap up

Outcome perspective: Happening across sectors

Rigorous modelling underpinning multifaceted performance evaluation

- Service mapping;
- Consistent use of Mass balances;
- Historical data track record

Future research:

- Cross-sectorial applicability?
- Linking conceptual/scientific modelling
- Catchment-level analysis
- Exploit link with sustainability analysis

Thank you for your attention

LINDA NEWNES

L.B.NEWNES@BATH.AC.UK