Multiplicative-Form CERs: A Progress Review

Mitch Robinson, D.Sc. Eric Mosier

ISPA/SCEA Conference and Training Workshop

Industry Hills, CA, June 24-27, 2008

Project Motivations and Goals

- The exponential function, y = a×x^b, and the power function, y = a×b^{cx}, are increasingly popular model forms for CER development
- The Excel Solver has put the ease of fitting these model forms on a par with linear regressions
 - Little training is necessary to "push the [Solve] button"
- However, the math of "multiplicative CERs" is less easy and knowledge about them is less widespread than their linear regression cousins
 - Compare courses you've taken; books on your shelf
- Now is a good time to bring together key facts and lessons about working with these functions

Today's Work

- Report findings on model fitting exercises
 - Defer "theoretical" work for later
 - "Practical" exercises often surprise
- Keep the initial focuses simple and practical
 - Fit model parameters "constants" with the Excel Solver
 - Vary:
 - Model constants a and b in an artificial data set let c = 1
 - Initial trial values the Solver uses for the model constants
 - Objective functions the criteria for "best" model constants
 - Solver option settings
- Observe useful and interesting results
 - How do the fitted constants relate to the constants in the data set?
 - How do the initial model constants affect the results?
 - How do different Solver option settings affect the results?
 - How do different objective functions affect the results?

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Exercise Procedures

- Design a data set of as, bs, and xs
- Spreadsheet formulas populate the ys

y=ax^b b а X 0.90 1.50 2.00 -0.74 1.50 4.00 -0.74 0.54 -0.15 1.35 1.50 2.00 1.22 1.50 4.00 -0.15 2.00 -0.74 1.50 2.50 2.50 4.00 -0.74 0.90 2.25 2.00 -0.15 2.50 2.50 4.00 -0.15 2.03

wyl

Data area for $y = ax^{b}$

- Provide starting values **a'**,**b'** for **a**,**b**
- Spreadsheet formulas populate y' and error functions

a'	1.00000	x	y'= a'x ^{b'}	У	(y-y') / y'	((y-y') / y') ²
b'	0.00000	2.00	1.00	0.90	-0.10	0.01
		4.00	1.00	0.54	-0.46	0.21
		2.00	1.00	1.35	0.35	0.12
		4.00	1.00	1.22	0.22	0.05
		2.00	1.00	1.50	0.50	0.25
		4.00	1.00	0.90	-0.10	0.01
		2.00	1.00	2.25	1.25	1.56
		4.00	1.00	2.03	1.03	1.05

7.77

Working area

Formulas populate the objective and other error summaries

Working area

a'	1.00000	x	y'= a'x ^{b'}	У	(y-y') / y'	((y-y') / y') ²
b'	0.00000	2.00	1.00	0.9	-0.10	0.01
-		4.00	1.00	0.54	-0.46	0.21
		2.00	1.00	1.35	0.35	0.12
		4.00	1.00	1.215	0.22	0.05
		2.00	1.00	1.5	0.50	0.25
		4.00	1.00	0.9	-0.10	0.01
		2.00	1.00	2.25	1.25	1.56
		4.00	1.00	2.025	1.03	1.05
		objective		Σ	$((y-y')/y')^2$	3.26
		geometric mean error		(П(y/y ')) ^{1/n}		4.90
		averaç	ge % error	∑(1/ <i>n</i>)(100 * ((<i>y-y')/y'</i>) %	34%

wyle ⁶

• Run the Solver to find *a**,*b** that minimize the objective

	Н	1	J	K	L	М	N		
14	a*	1.00000		y*=a*x ^{b*}	(y-y*)/y*	$((y-y^{*})/y^{*})^{2}$	y/y*	start	
15	b*	0.00000		1.00	-0.10	0.01	0.90	start	
16				1.00	-0.46	0.21	0.54	start	
17				1.00	0.35	0.12	1.35		
18				1.00	0.22	0.05	1.22	optin	
19				1.00	0.50	0.25	1.50	optin	
20				1.00	-0.10	0.01	0.90	optin	
21				1.00	1.25	1.56	2.25		
22				1.00	1.03	1.05	2.03		
24		obioativo		5	((), , ,*)(),*)2	2.26		atart	
24		objective		L	((y-y)/y)	J.20		start	
20	Calver Dave		_	Thursday 19		a house		opun	
27	Solver Para	imeters		Contraction of the local division of the loc		-		a*c	
28	Set Target	t Cell: \$M\$	24	E		5	olve	П(a/е	
29	Equal To:	Max () M	in 🔘 Valu	ue of: 0			· ·	
30	By Chang	ing Cells:					lose	Σ(1/n	
31	¢ī¢14·¢ī	¢15				uess			
32	4441144					0000			
33	Subject to	o the Constraints:					ptions		
34						Add			
35									
30	<u>Change</u>								
37					- D	elete	SECAI		
30							Help		-
14 4									
Poin	t 🛅	_				<u> </u>		- 🕀	:

Visit <u>http://www.solver.com/tutorial.htm</u> for background info

wyle

Set the Solver options

Solver Options	0.000	
Max Time:	1000 seconds	ОК
Iterations:	1000	Cancel
Precision:	0.000001	Load Model
Tolerance:	0.000001 %	Save Model
Convergence:	0.000001	Help
Assume Linear	Model 📃 Use A	utomatic Scaling
Assume Non-N	legative 📃 Show	Iteration <u>R</u> esults
Estimates	Derivatives	Search
Tangent	Eorward	Newton
○ <u>Q</u> uadratic	○ <u>C</u> entral	Conjugate
L		

Visit <u>http://www.solver.com/tutorial.htm</u> for background info

wyle

• Record the results for different initial values for a',b'

	Summary area				
Initial trial values	start a'	2	1	10	0.10
	start b'	0.75	1.00	10.00	0.10
Solver-found best values	optimal <i>a*</i> optimal <i>b*</i>	1.93 0.86	1.93 0.86	1.93 0.86	1.93 0.86
Initial & final objective values	start objective optimal objective	11.01 8.80	26.11 8.80	62.97 8.80	5.41E+07 8.80

Exercise Summary Template

- *a',b'* are trial values for *a,b*; *y'* is the associated y value
- a*,b* are trial a,b values that minimize the objective function; y* is the associated "best" y value

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Results Overview

Results Overview (1)

- *a*,b** were always different from the average a,b in the data set
 - $b^* > B$ when we used the objective function $\sum ((y-y')/y')^2$
 - $b^* < B$ when we used the objective function $\sum ((y-y')/y)^2$
- On the average, y*>y when we used the objective function $\sum ((y-y')/y')^2$ and y*<y with the objective function $\sum ((y-y')/y)^2$
- The a',b' we used to start the Solver tended to not make a difference in the Solver-identified a*,b*, but
 - In some cases the Solver identified a "false a*,b*"; but restarting it from this "false" a*,b* led to an improved a*,b*
 - Reducing the "convergence parameter" in the Solver options avoided this "early convergence"

Results Overview (2)

- Objective functions incorporating absolute values of y-y' were often ill-behaved in some areas
 - Initial a',b' made a difference in the Solver-identified a*,b* in every case

1.1.1

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

How Do a*,b* Relate to ā,Б?

wyle

a^*,b^* versus \bar{a} , \mathcal{B} : Design for $a \times b^x \& \Sigma((y-y')/y')^2$

Design

$$y=ab^{x}, \Sigma((y-y')/y')^{2}, x \in \{1,2\} \quad \frac{(a',b') (1.5,0.6) (1.5,0.9) (2.5,0.6) (2.5,0.9)}{\text{lines} 16 16 16 16} \quad \bar{a} = 2.0, \bar{b} = 0.75$$

- *a b*^x generates the *y* value and *a*' *x*^{*b*'} generates the *y*' values
- The best values of a and b minimize the sum of the squared "percentage errors," where the "percentage error" is relative to the estimated y' – versus the actual y
- Among the 64 data lines
 - 8 are $y = 1.5 \times 0.6^{1}$
 - 8 are $y = 1.5 \times 0.6^2$
 - 8 are $y = 1.5 \times 0.9^{1}$
 - 8 are $y = 1.5 \times 0.9^2$
 - etc.

Noteworthy: We've subsequently seen that one replicate per a',b' pair gives the same results as eight

a*,b* and \bar{a} ,Б: More About a×b^x & $\Sigma((y-y')/y')^2$

	Summary area				
Initial trial values	start a'	2	1	10	0.10
	start b'	0.75	1.00	10.00	0.10
Solver-found	optimal a*	1.93	1.93	1.93	1.93
best values	optimal <i>b</i> *	0.86	0.86	0.86	0.86
Initial & final	start objective	11.01	26.11	62.97	5.41E+07
objective values	optimal objective	8.80	8.80	8.80	8.80

We provide the Solver four different sets of initial trial values, a' and b' – in case this affects the a* and b* values it finds

The first initial trial values are the average *a* and the average *b*

For each *a*' and *b*' trial value in Solver there is a value of the objective function, $\Sigma((y-y')/y')^2$ where $y' = a' \times b'^x$ for the *x* value on each data line

1.1.1

The start objective is the value of the objective at the initial a',b'

a*,b* and ā, Б : Results for $a \times b^x \& \Sigma((y-y')/y')^2$

We see that

- Initial trial values don't affect the Solver-identified a*, b*
- a*, b* improve the objective compared to all initial a', b', including the average a, b
- Solver-identified a*, b* are respectively less and greater than the average a and b

WW

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

a*,b* and \bar{a} , \mathcal{B} : Design for $a \times x^b \& \Sigma ((y-y')/y')^2$

Design

$b = \alpha + b + b^2$	(a', b')	(1.5, <mark>-0.15)</mark> ((1.5, <mark>-0.74)</mark>	(2.5, <mark>-0.15</mark>)	(2.5, <mark>-0.74</mark>)	ā = 2.0, <mark>Б = -0.44</mark>
$y=ax$, $\Sigma((y-y')/y')$, $x \in \{2,4\}$	lines	16	16	16	16	$b = \log_2 r; r \in \{0.60, 0.90\}$

- a x^b generates the y values prior design used a b^x
- The best values of a and b minimize the sum of the squared "percentage errors," where the "percentage error" is relative to the "estimated" y' – versus the "actual" y
- Among the 64 data lines
 - 8 are $y = 1.5 \times 0.2^{-0.15}$
 - 8 are $y = 1.5 \times 0.4^{-0.15}$
 - 8 are $y = 1.5 \times 0.2^{-0.74}$
 - 8 are $y = 1.5 \times 0.4^{-0.74}$
 - etc.,

Noteworthy: We've subsequently seen that one replicate per a',b' pair gives the same results as eight

a*,b* and \bar{a} , \boldsymbol{b} : More About $\mathbf{a} \times \mathbf{x}^{\mathbf{b}} \& \Sigma((\mathbf{y} - \mathbf{y}')/\mathbf{y}')^2$

Design

$$y=ax^{b}, \Sigma((y-y')/y')^{2}, x \in \{2,4\} \qquad \frac{(a',b') (1.5,-0.15) (1.5,-0.74) (2.5,-0.15) (2.5,-0.74)}{10 16 16 16 b = \log_{2} r; r \in \{0.60, 0.90\}}$$

- The x, b values here are related to the x, b values in the $y = a b^{x}$ work
 - *b* values here are \log_2 of those before: $\log_2 0.6 \approx -0.74$, $\log_2 0.9 \approx -0.15$; or 2^{-0.74} ≈ 0.6, 2^{-0.15} ≈ 0.9
 - x values before are $\log_2 \text{ of } x$ values here: $\log_2 2 = 1$, $\log_2 4 = 2 \text{ or } 2^1 = 2$, $2^2 = 4 \frac{1}{2}$
- The a values are the same

When we relate the *b*s and *x*s this way – exponents in one form are \log_2 of the base values in the other form – we can show that the two formulas are equivalent and y values are identical – i.e., equivalent ways of stating a learning curve. Allows us to ask if we get the same a^*, b^* despite "surface differences" in the equation

Design

$$y=ab^{x}$$
, $\Sigma((y-y')/y')^{2}$, $x \in \{1,2\}$ (a',b') $(1.5,0.6)$ $(1.5,0.9)$ $(2.5,0.6)$ $(2.5,0.9)$ (a',b') (a',b') $(1.5,0.6)$ $(1.5,0.9)$ (a',b') $(x = 0.75)$
 $x = \log_{2} q; q \in \{2,4\}$

a*,b* and \bar{a} , \bar{b} : Results for $\mathbf{a} \times \mathbf{x} \, \mathbf{b} \, \& \, \Sigma \, ((\mathbf{y} - \mathbf{y}')/\mathbf{y}')^2$

	Summary area					
Initial trial values	start a *	2	1	10	0	
	start b *	-0.42	0	3	2	
Solver-found	optimal a *	1.93	1.93	1.93	1.93	
best values	optimal b *	-0.22	-0.22	-0.22	-0.22	
Initial & final	start objective	11.01	26.11	62.97	12.43	
objective values	optimal objective	8.80	8.80	8.80	8.80	

We see that

- Initial trial values don't affect the Solver-identified a* and b*
- a*,b* improve the objective compared to that for the average a and b
- Solver-identified a*,b* are respectively less and greater than the average a and b
- a^*, b^* are identical to $y=a \times b^X$ solutions after undoing $\log_2 \text{ transforms} 2^{-0.22} \approx 0.86$
- Not immediately obvious the Solver would find the related b* values across the equivalent but different equation forms for y

Earlier Results for $a \times b^{x} \& \Sigma((y-y')/y')^{2}$

WW

a*,b* and ā,Б: Set All a=2 Exercise

Set all *a* = 2 in the data set – which should further simplify the Solver's problem – with analogous results

- Initial trial values don't affect the Solver-identified a* and b*
- *a**,*b** improve the objective compared to that for the average a and b
- a^*, b^* are identical in $y = a \times x^b$ and $y = a \times b^x$ variants after undoing the $\log_2 b$ transform
- Solver-identified b* is greater than the average b; a* is less than 2, the average a
 - $a^* = 1.81$ is slightly less than before; $b^* = 0.86$ or -0.22 is identical

Design

x 2	(a', b')	(<mark>2</mark> , 0.6)	(2 , 0.9)	(<mark>2</mark> , 0.6)	(<mark>2</mark> , 0.9)	ā = 2.0, Б = 0.75
$y=ab^{2}, \Sigma((y-y')/y')^{2}, x \in \{1,2\}$	lines	16	16	16	16	$x = \log_2 q; q \in \{2, 4\}$
Design						
$b = (c + b) + b^2$	(a', b')	(<mark>2</mark> , -0.15)	(<mark>2</mark> , -0.74)	(<mark>2</mark> , -0.15)	(<mark>2</mark> , -0.74)	ā = 2.0, Б = -0.44
$y=ax$, $\Sigma((y-y^{-})/y^{-})$, $x \in \{2,4\}$	lines	16	16	16	16	$b = \log_2 r; r \in \{0.60, 0.90\}$

a*,b* and \bar{a} ,Б: Results for Σ ((y-y')/y')⁸

Analogous results in designs using a sum of eighth power errors

- Initial trial values don't affect the Solver-identified a* and b*
- *a**,*b** improve the objective compared to that for the average a and b
- a^*, b^* are identical in $y = a \times x^b$ and $y = a \times b^x$ variants after undoing the $\log_2 b$ transform
- Solver-identified b* is greater than the average b; a* is less than the average a

Design

 $y=a b^{X}, \Sigma((y-y')/y')^{8}, x \in \{1,2\}$ (a', b') (1.5, 0.6) (1.5, 0.9) (2.5, 0.6) (2.5, 0.9) a = 2.0, b = 0.75 $x = \log_{2} q; q \in \{2, 4\}$ Design $y=a x^{b}, \Sigma((y-y')/y')^{8}, x \in \{2,4\}$ (a', b') (1.5, -0.15) (1.5, -0.74) (2.5, -0.15) (2.5, -0.74) a = 2.0, b = -0.44 $b = \log_{2} r; r \in \{0.60, 0.90\}$ Design $y=a b^{X}, \Sigma((y-y')/y')^{8}, x \in \{1,2\}$ (a', b') (2, 0.6) (2, 0.9) (2, 0.6) (2, 0.9) a = 2.0, b = -0.44 $b = \log_{2} r; r \in \{0.60, 0.90\}$ a = 2.0, b = -0.44 $b = \log_{2} r; r \in \{0.60, 0.90\}$ a = 2.0, b = -0.44 $b = \log_{2} r; r \in \{0.60, 0.90\}$ a = 2.0, b = -0.44 $b = \log_{2} r; r \in \{0.60, 0.90\}$ a = 2.0, b = -0.44 $b = \log_{2} r; r \in \{0.60, 0.90\}$

le²⁴

a*,b* and ā,Б: Results for "unbalanced bs"

Design

× 2	(a', b')	(1.5, 0.6)	(1.5, 0.9)	(2.5, 0.6)	(2.5, 0.9)	ā = 2.0, Б = 0.675
$y=ab^{2}, \Sigma((y-y')/y')^{2}, x \in \{1,2\}$	lines	24	8	24	8	$x = \log_2 q; q \in \{2, 4\}$
Design						
x	(a', b')	(1.5, 0.6)	(1.5, 0.9)	(2.5, 0.6)	(2.5, 0.9)	ā = 2.0, Б = 0.825
$y=ab^{,} \Sigma((y-y')/y')^{,} x \in \{1,2\}$	lines	8	24	8	24	$x = \log_2 q; q \in \{2, 4\}$
Design						
	(a', b')	(1.5, -0.74)	(1.5, -0.15)	(2.5, -0.74)	(2.5, -0.15)	ā = 2.0, Б = -0.591
$y=ax^{-}, \Sigma((y-y')/y')^{-}, x \in \{2,4\}$	lines	24	8	24	8	$b = \log_2 r; r \in \{0.60, 0.90\}$
Design						
b	(a', b')	(1.5, -0.74)	(1.5, -0.15)	(2.5, -0.74)	(2.5, -0.15)	ā = 2.0, Б = -0.278
$y=ax^{2}, \Sigma((y-y')/y')^{-}, x \in \{2,4\}$	lines	8	24	8	24	$b = \log_2 r; r \in \{0.60, 0.90\}$

Analogous results in sum of "unbalanced-bs," squared error designs

- Initial trial values don't affect the Solver-identified a* and b*
- a*,b* improve the objective compared to that for the average a and b
- Solver-identified a*, b* are both greater than the average a and b
- a^*, b^* are identical in $y = a \times x^b$ and $y = a \times b^x$ variants after undoing the $\log_2 b$ transform

How Do a*,b* Relate to ā,Б? Summary

Function	Objective function	Other	ā	a*	Б:	b*	Notes
y = a b ^x	$\Sigma ((y-y')/y')^2$	a ∈ {1.5, 2.5} b ∈ {0.6, 0.9}	2	1.925	0.75	0.861	
		all a=2	2	1.812	0.75	0.861	
	$\Sigma ((y-y')/y')^8$	$\begin{array}{l} a \in \{1.5, 2.5\} \\ b \in \{0.6, 0.9\} \end{array}$	2	1.940	0.750	0.834	
		all a=2	2	1.903	0.750	0.793	analogous results for
	$\Sigma ((y-y')/y')^2$	a ∈ {1.5, 2.5} b ∈ {0.6, 0.9: 3:1}	2	1.883	0.675	0.790	y = a x ~
	$\Sigma ((y-y')/y')^2$	a ∈ {1.5, 2.5} b ∈ {0.6, 0.9: 1:3}	2	2.020	0.825	0.889	

WVI

Noteworthy

- *a** and *b** stay within the range of given values
- b^* stays within [\mathcal{B} , max(b)]; a^* generally stays within [min(a), \overline{a}]

On the average [⊕]	When the objective is:
y* > y	<i>Σ</i> ((y-y')/y') ²
y* < y	<i>Σ</i> ((y-y')/y) ²

wyle

^{\oplus} Arithmetic mean Σ (1/n) (y – y*) < 0 Geometric mean Π (y/y*) ^{1/n} < 1

Design

$X = (x + y)^2$	(a', b')	(1.5, 0.6)	(1.5, 0.9)	(2.5, 0.6)	(2.5, 0.9)	ā = 2.0, Б = 0.75
$y=ab$, $\Sigma((y-y')/y')$, $x \in \{1,2\}$	lines	16	16	16	16	$x = \log_2 q; q \in \{2, 4\}$
Design						
$b = \alpha$ $b + b^2$ $c = b$	(a', b')	(1.5, <mark>-0.15</mark>)	(1.5, <mark>-0.74</mark>)	(2.5, <mark>-0.15</mark>)	(2.5, <mark>-0.74</mark>)	ā = 2.0, 5 = -0.44
$y=ax$, $\Sigma((y-y')/y')$, $x \in \{2,4\}$	lines	16	16	16	16	$b = \log_2 r; r \in \{0.60, 0.90\}$

Summary area for both cases

start a	2.00	1.00	10.00	0.10
start b	0.75	1.00	10.00	0.10
optimal a	1.925	1.925	1.925	1.925
optimal b	0.861	0.861	0.861	0.861
$\Pi(y/y^*)^{1/n}$	0.79	0.79	0.79	0.79
∑(1/n)(<i>y-y*</i>)	-0.21	-0.21	-0.21	-0.21

28

wyle

Noteworthy

• Also **b* > 5**

But **y*** < **y** When
$$\Sigma$$
 ((y-y')/**y**)²: Examples

Design

$x = (x - y)^2$	(a', b')	(1.5, 0.6	6) (1.5	5, 0.9)	(2.5, 0.6)	(2.5, 0.9)	ā = 2.0, Б = 0.75
$y=ab$, $\Sigma((y-y')/y)$, $x \in \{1,2\}$	lines	16		16	16	16	$x = \log_2 q; q \in \{2, 4\}$
Design							
b π (1) $(x)^2$ (1.0)	(a', b')	(1.5, -0.1	 5) (1.5 ,	-0.74)	(2.5, -0.15) (2.5, -0.74)	ā = 2.0, 5 = -0.44
$y=ax$, $\Sigma((y-y')/y)$, $x \in \{1,2\}$	lines	16		16	16	16	$b = \log_2 r; r \in \{0.60, 0.90\}$
5	ummary	area					
	start	а	2.00	1.00	10.00	0.10	
	start	b	0.75	1.00	10.00	0.10	
	optima	al a	1.948	1.948	1.948	1.948	
	optima	al b	0.627	0.627	0.627	0.627	
	П(y/y*)) ^{1/n}	1.26	1.26	1.26	1.26	
	∑(1/n)(յ	/-y*)	0.34	0.34	0.34	0.34	
 Also b* < 5 							

29

wyle

But $y^* < y$ When $\sum ((y-y')/y)^2$: More Examples

Design

$$y=a b^{x}, \ \Sigma((y-y')/y)^{8}, x \in \{1,2\} \qquad \frac{(a',b') (1.5,0.6) (1.5,0.9) (2.5,0.6) (2.5,0.9)}{|\text{lines} 16 16 16 16 16}, x = \log_{2} q; q \in \{2, 4\}$$
Design
$$y=a b^{x}, \ \Sigma((y-y')/y)^{2}, x \in \{1,2\} \qquad \frac{(a',b') (1.5,0.6) (1.5,0.9) (2.5,0.6) (2.5,0.9)}{|\text{lines} 24 8 24 8}, x = \log_{2} q; q \in \{2, 4\}$$
Design
$$y=a b^{x}, \ \Sigma((y-y')/y)^{2}, x \in \{1,2\} \qquad \frac{(a',b') (1.5,0.6) (1.5,0.9) (2.5,0.6) (2.5,0.9)}{|\text{lines} 8 24 8 24 8}, x = \log_{2} q; q \in \{2, 4\}$$

|(y-y')/•|: Absolute Value Objectives [⊕]

|(y-y')/•|: Absolute Value Objectives [⊕](1)

- Absolute value objective functions give equal weight to y-y' differences in determining a*,b*
- $|(y-y^*)/|$ and its equivalent, $((y-y^*)/|)^2$ $)^{0.5}$, gave identical results
- · Some results followed the patterns we observed earlier
 - \bar{a} , \bar{b} were never the best values for a, b
 - Solver solutions *a**,*b** always had smaller objective function values
 - |(y-y') /y' | led to y* > y on the average
 |(y-y') /y | led to y*< y on the average

(y-y')/• |: Absolute Value Objectives (2)

- Other results didn't follow earlier patterns
 - Initial values for a',b' mattered for both y* and y as "•"
 - Each initial a',b' led to different a*,b*
 - \bar{a} , \bar{b} initial values gave a^* , b^* with the best objective function values
 - Solver found different a^*, b^* for $y = a \times b^x$ and for $y = a \times x^b$
- These behaviors may pose challenges to those interested in absolute value-type objective functions

Solver Stops Early on Nonoptimal a*,b*

Solver Stops Early on Nonoptimal a*,b*

Is the Solver-identified a*,b* the best solution?

Solver Results	_	×				
Solver has converged to the current solution. All constraints are satisfied. Reports						
 Keep Solver Solution Restore Original Values 		Answer Sensitivity Limits				
OK Cancel	Save Scenario	. <u>H</u> elp				

- Not always. We saw cases of "early convergence" to a "false" a*,b*
 - The Solver found a single a*,b* for three of the initial a',b'; with a better objective than the "false" a*,b*
 - Running the Solver again with the "false" a*, b* as the initial a', b' found the common a*, b*
 - We observed early convergence under $\sum ((y-y')/y')^2$ for $y = a \times b^x$ with initial a',b' = 0.1,0.1; and for $y = a \times x^b$ with a',b' = 0.1, $\log_2 0.10 \approx -3.32$)
 - Under $\Sigma((y-y')/y)^2$ it occurred with 10, 10 and with 10, $\log_2 10 \approx 3.32$, respectively

Solver Stops Early: Example

Design

$X = ((1))^2$	(a', b')	(1.5, 0.6)	(1.5, 0.9)	(2.5, 0.6)	(2.5, 0.9)	ā = 2.0, Б = 0.75
$y=ab$, $\Sigma((y-y^{*})/y)$, $x \in \{1,2\}$	lines	16	16	16	16	$x = \log_2 q; q \in \{2, 4\}$

• From a',b' = 0.10, 0.10, the Solver converges to false a*,b* = 0.954, 1.494

From a',b' = 0.954, 1.494, the Solver converges to the common a*,b* = 1.925, 0.861; the objective function improves from 12.43 to the common 8.80

Summary area					
start a	2.00	1.00	10.00	0.10 0.954	
start b	0.75	1.00	10.00	0.10	
optimal a optimal b	1.925 0.861	1.925 0.861	1.925 0.861	0.954 1.925 1.494 0.861	
optimal objective	8.80	8.80	8.80	12.43 8.80	

1.1.1

When the Solver Stops Early: One Clue (1)

 Reducing the convergence constant from 10⁻⁶ to 10⁻¹² avoided the false a*,b*

Solver Options		X
Max Time:	1000 seconds	ОК
Iterations:	Iterations: 1000	
Precision:	0.000001	Load Model
Tolerance:	Tolerance: 0.000001 %	
Convergence:	0.00000000001	<u>H</u> elp
Assume Linea	r Model	Automatic Scaling v Iteration <u>R</u> esults
Estimates	Derivatives	Search
© Quadratic	© <u>C</u> entral	Conjugate
	Solver Options Max Time: Iterations: Precision: Tolerance: Convergence: Assume Linea Assume Non- Estimates Tangent Quadratic	Solver Options Max Time: 1000 Iterations: 1000 Precision: 0.000001 Tolerance: 0.000001 Convergence: 0.00000000001 Assume Linear Model Use difference Assume Non-Negative Show Estimates Derivatives Tangent Eorward Quadratic Central

 The convergence constant provides a stopping threshold; the Solver "converges" if the relative change in the solution is no greater than the threshold

http://office.microsoft.com/en-us/excel/HP100726911033.aspx)

When the Solver Stops Early: One Clue (2)

 We conjectured that early convergence reflected a relative "flat zone" in the objective function surface – versus a local minimum

	Solver Options		×
	Max Time:	1000 seconds	ОК
	Iterations:	1000	Cancel
	Precision:	0.000001	Load Model
	Tolerance:	0.000001 %	Save Model
\longrightarrow	Convergence:	0.00000000001	<u>H</u> elp
	Assume Linear	r <u>M</u> odel	Automatic Scaling
	Assume Non-1 Estimates	Negative Show	v Iteration <u>R</u> esults
	Tangent	 Eorward 	Newton
	Quadratic	O Central	Conjugate

 Reducing the convergence constant allows the Solver to continue solving in the presence of only "modest" improvements in the objective

When the Solver Stops Early: One Clue (3)

• We plotted the *a'*,*b'* over Solver iterations

Design

$$y=ab^{x}, \Sigma((y-y')/y')^{2}, x \in \{1,2\} \frac{(a',b') (1.5,0.6) (1.5,0.9) (2.5,0.6) (2.5,0.9)}{\text{lines} 16 16 16 16} \quad \bar{a} = 2.0, \ \bar{b} = 0.75$$

WVI(

When the Solver Stops Early: One Clue (3)

- Solving with 10^{-12} convergence finds the common a^*, b^* in one run
- The two a',b' paths are similar but not identical after the restart point compare the eighth through fifteenth points on both paths
- 10⁻¹² convergence stops in one fewer iteration

When the Solver Stops Early: One Clue (4)

When the Solver Stops Early: One Clue (5)

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Two Cases of Lognormal Data

What About Lognormal Data ?(1)

- Previously worked with uniform xs in the data
 - x = 2 or 4 in equal numbers, b = 0.6 or 0.9 in varying mixtures

Design

$$y=ab^{x}, \Sigma((y-y')/y')^{2}, x \in \{1,2\} \quad \frac{(a',b') (1.5,0.6) (1.5,0.9) (2.5,0.6) (2.5,0.9)}{\text{lines} 16 16 16 16} \quad \frac{a}{x} = 2.0, \ bar{b} = 0.75$$

- Results roughly met our "naive" expectations
 - b* greater than *B* but tracked changes to *B* as we varied the mixture of 0.6s and 0.9s in the data set

What About Lognormal Data ?(2)

 In this excursion we work with xs that are a lognormal sample or are derived from lognormal samples

Decian

$y=ab^{x}$, $\Sigma((y-y')/y')^{2}$	(a', b')	(1.5, 0.6)	(1.5, 0.9)	(2.5, 0.6)	(2.5, 0.9)	ā = 2.0, Б = 0.75
	lines	20 (xs)	21 (xs)	22 (xs)	23 (x s)	x=log ₂ (q samples) q~ln(μ=2, σ = 1)
Design $y=ax^{b},\Sigma((y-y')/y')^{2}$	(a', b')	(1.5, <mark>-0.15</mark>)	(1.5, - <mark>0.74</mark>)	(2.5, - <mark>0.15</mark>)	(2.5, - <mark>0.74)</mark>	ā = 2.0, Б = -0.44
$x \sim \ln(\mu = 2, \sigma = 1)$	lines	20 (xs)	21 (xs)	22 (xs)	23 (xs)	$b = \log_2 r; r \in \{0.60, 0.90\}$

WW

What About Lognormal Data ?(3)

- Results were generally consistent with earlier results
 - The common b^* for $a \times b^x$ was greater than the average b
 - The common a*,b* was identical for a×b^x and a×x^b after undoing the log₂ b transform
- Unlike the earlier results
 - The common *a*^{*} was greater than the average *a*

Summary (1)

- We've observed a number of behaviors in a simple environment which may or may not generalize to "practical" environments or to more general environments. Among them:
 - When we used a $\Sigma(y y')/y'^2$ objective function, b^* was greater than the average *b*; and $y^* > y$

We reversed these results for for a $\Sigma((y - y^*)/y)^2$ objective

- The average a and b were always good starting points
- The Solver converged early for some initial a',b'; restarting the Solver from the "false" a*,b* found the common – and better – a*,b*

We avoided the early stop by reducing the Solver's "convergence constant"

We made it practice to re-run the Solver several times in all cases; one rerun was usually enough – but not always

Summary (2)

- We've observed a number of behaviors in a simple environment which may or may not generalize to "practical" environments or to more general environments. Among them:
 - Initial *a'*,*b'* did not affect the final results with $\Sigma((y-y^*)/y^*)^k$, $k \in (2,8)$
 - Initial *a*',*b*' did affect results when we used an absolute value objective function $\Sigma |(y-y^*)/y^*|$ or $\Sigma (((y-y^*)/y^*)^2)^{0.5}$ Solver identified a different *a**,*b** for each initial *a*',*b*'

Moving Forward

- Catalog key theoretical concepts on fitting power and exponential functions
 - Use these theory to drive further empirical tests
- Catalog lessons learned from these exercises
 - Use these empirical results to drive investigations into theory
- Address the question of when and why you should want to use power and exponential functions
 - We should want *a priori* conditions
 - Statistical goodness-of-fit tests provide a posteriori rationale; may be "hijacked" by "unusual data"; and still leave open the "why" question
 - The math/economics/psychology literature on measurement scale theory provides a solid starting point

Additional Discussions

Why We Studied "Nonlinear Methods" and the Solver in Particular

- Why study iterative, "only approximate," clearly imperfect methods for fitting model constants when we can always solve linear, log-transformed models?
 - Not all interesting CERs with exponential and power form components will be "log transformable"
 - Log transform approaches have their own properties which are not in the scope of this report not all of which may be desirable
 - Iterative methods, including the Solver, have a user community convinced about their utility
 - The project goal is to document methods' characteristics and not to make the case for one method or another as being the best

A Subtlety

- In "ordinary" regression analyses we:
 - assume a single value for *a* and for *b* drive the ys
 - disturbances in the ys we observe prevent us from identifying a and b exactly; we can only estimate a and b only with uncertainty
 - we term the data "noisy but homogeneous"
- Here, the regression data are perfect but heterogeneous:
 - each line has varying as and bs
 - we exactly calculate y on each line from the given a, b, and x values
 - we search for a single value for a and for b that together, "best represent" the differing a,b pairs in the data set
 - the errors are due, in principle, to the inability of any one a, b pair to represent the differing *a*,*b* pairs in the data
 - when the data set comprises different types of articles we consider the data set heterogeneous