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Project Motivations and Goals

» The exponential function, y = axx?, and the power
function, y = axb®X, are increasingly popular model
forms for CER development

» The Excel Solver has put the ease of fitting these
model forms on a par with linear regressions
= Little training is necessary to “push the [Solve] button”

» However, the math of “multiplicative CERs” is less
easy and knowledge about them Is less widespread
than their linear regression cousins

= Compare courses you've taken; books on your shelf

» Now Is a good time to bring together key facts and
lessons about working with these functions

Wyle
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o TNN———————
Today’s Work

» Report findings on model fitting exercises

= Defer “theoretical” work for later
= “Practical” exercises often surprise

» Keep the initial focuses simple and practical
= Fit model parameters — “constants” — with the Excel Solver
= Vary:
- Model constants aand b in an artificial dataset—letc=1
* Initial trial values the Solver uses for the model constants

* Objective functions —the criteria for “best” model constants
« Solver option settings

» Observe useful and interesting results

= How do the fitted constants relate to the constants in the data set?
= How do the initial model constants affect the results?

= How do different Solver option settings affect the results?

= How do different objective functions affect the results?

Wyle mmm
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Exercise Procedures

Wyle o
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Exercise Procedures

* Design a data set of as, bs, and xs

« Spreadsheet formulas populate the ys

Data area for y = ax

a X b y=axb
1.50 2.00 -0.74 0.90
1.50 4.00 -0.74 0.54
1.50 2.00 -0.15 1.35
1.50 4.00 -0.15 1.22
2.50 2.00 -0.74 1.50
2.50 4.00 -0.74 0.90
2.50 2.00 -0.15 2.25
2.50 4.00 -0.15 2.03

wyle

~—— 4
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Exercise Procedures

* Provide starting values a’,b’ for a,b
« Spreadsheet formulas populate y’ and error functions

Working area

a' 1.00000 x |y =ax® y v’y | )7y °

b’ 0.00000 | 2.00 1.00 0.90 -0.10 0.01
4.00 1.00 0.54 -0.46 0.21
2.00 1.00 1.35 0.35 0.12
4.00 1.00 1.22 0.22 0.05
2.00 1.00 1.50 0.50 0.25
4.00 1.00 0.90 -0.10 0.01
2.00 1.00 2.25 1.25 1.56
4.00 1.00 2.03 1.03 1.05

Wyle
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Exercise Procedures

 Formulas populate the objective and other error summaries

Working area

a' 1.00000 X y I = a'Xb , y (y-yp /y' ((y.yQ /y) 2
b’ 0.00000 2.00 1.00 0.9 -0.10 0.01
4.00 1.00 0.54 -0.46 0.21
2.00 1.00 1.35 0.35 0.12
4.00 1.00 1.215 0.22 0.05
2.00 1.00 1.5 0.50 0.25
4.00 1.00 0.9 -0.10 0.01
2.00 1.00 2.25 1.25 1.56
4.00 1.00 2.025 1.03 1.05
objective > ((y_y')/y')2 3.26
geometric mean 1/
error @lyly )" 4.90
average % error  2(1/n)(100 * (y-y')y’) % 34%

)
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Exercise Procedures

 Run the Solver to find a*,b*that minimize the objective

51514:51515

Subject to the Constraints:

Puail EE

==SHiS|

L =

H [ 1 k | v f.m [ N |
14 a* 1.00000 y=ax® | YW (P yiY* start
15 b* 0.00000 1.00 -0.10 0.01 0.a0 start
16 1.00 -0.46 0.21 0.54 start
17 1.00 0.35 012 1.35
18 1.00 0.22 0.05 1.22 optin
19 1.00 0.50 0.25 1.50 optin|=
20 1.00 -0.10 0.01 0.90 optin
21 1.00 1.25 1.56 2.25
22 1.00 1.03 1.05 2.03 T
24 objective T ([y-y*Wy*) ____;_E_E____i start
25 . . optin
Salver Parameters
a“c

Set Target Cell: S TI(a/e

Equal To: TiMax @ Min () valueof: |0

By Changing Cells: Z{r

T

Visit http://www.solver.com/tutorial.htm for background info

Wyle
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Exercise Procedures

« Set the Solver options

Solver Options &
Max Time: 1000 | seconds QK.
Iterations: 1000 Cancel
Precision: 0.000001 Load Model. ..
Tolerance: 0.000001 %% Save Model, ..
Convergence: 0.000001 Help
[ Assume Linear Model [ Use Automatic Scaling
[ Assume Mon-Negative || Show Iteration Results

Estimates Derivatives Search
O Tagent  @rowsd @t
() Quadratic () Central () Conjugate

.

il

Visit http://www.solver.com/tutorial.ntm for background info

Wyle
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Exercise Procedures

« Record the results for different initial values for a’,b’

Summary area

1 e start a’ 2 1 10 0.10
Initial trial values
start b’ 0.75 1.00 10.00 0.10
Solver-found —optimal a* 1.93 1.93 1.93 1.93
best values | optimal b* 0.86 0.86 0.86 0.86
Initial & final start objective 11.01 26.11 62.97 5.41E+07
objective values | optimal objective 8.80 8.80 8.80 8.80

w9
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o TNN———————
Exercise Summary Template

Example:
Data set x Data set
Model values equally _ includes
function represented in all Data set (a,b) pairs y=25x09%
/ (a,b) pairs \? \
X 2 l (@, b") (1.5,06) (1509 (25,06) (2.5,0.9
y=ab", 2(yy)y) . x e {12 Tinas 16 16 16 16
\ ) !
o . Number of ... repeated
Objective function: occurrences in the 8 times with
Find (optimal) a* b* data set x=1and 8
minimizing this with x = 2

- a’,b’aretrial values for a,b; y’is the associated y value
« a*b*are trial a,b values that minimize the objective function; y*is the associated

“best” y value
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Results Overview
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NN
Results Overview (1)

* a*,b* were always different from the average a,b in the data set

- b* > 5 when we used the objective function 2 ((y-y)/y’)?
- b* < B when we used the objective function 2 ((y-y))/y)?
* On the average, y*>y when we used the objective

function 2 ((y-y')/y’)? and y*<y with the objective function

2 ((y-y)ly)?
 The a’,b’ we used to start the Solver tended to not make a
difference in the Solver-identified a* b*, but

- In some cases the Solver identified a “false a* b*”; but restarting it

from this “false” a*,b* led to an improved a*,b*
- Reducing the “convergence parameter” in the Solver options

avoided this “early convergence”
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Results Overview (2

* Objective functions incorporating absolute values of y-y’ were
often ill-behaved in some areas

- Initial a’,b’ made a difference in the Solver-identified a* b* in
every case
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How Do a*,b* Relate to a,b?
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a*,b* versus a, b : Design for axb* & X ((y-y’)/y’)?

Design

. » (@ b)) (15,06) (1509 (25 06) (2509 4&=2005=075
y=ab", 2(y-y)y")  x e {12} 55T 46 16 16 16 x=l0gq; g {2 4)

* a b*generates the y value and a’xb’generates the y’ values

» The best values of a and b minimize the sum of the squared “percentage errors,” where the
“‘percentage error” is relative to the estimated y’ — versus the actual y

« Among the 64 data lines

- 8are y=1.5x0.6"
- 8are y=1.5x0.62
- 8are y=1.5x0.9"
- 8are y=1.5x0.92
- efc.

Noteworthy: We've subsequently seen that one replicate per a’,b’ pair gives the same results
as eight
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NSRS
a*,b* and a,6: More About axb* & X ((y-y’)/y’)?

Summary area

L start &’ 2 1 10 0.10
Initial trial values
start b’ 0.75 1.00 10.00 0.10
Solverfound  [optimal a* 1.93 1.93 1.93 1.93
best values | optimal b* 0.86 0.86 0.86 0.86
Initial & final start objective 11.01 26.11 62.97 5.41E+07
objective values | optimal objective 8.80 8.80 8.80 8.80 l

- We provide the Solver four different sets of initial trial values, a’and b’— in case
this affects the a* and b* values it finds

The first initial trial values are the average a and the average b

- For each a’and b’ trial value in Solver there is a value of the objective function,
Z((y—y)/y’)2 where y’ = a’ x b’ X for the x value on each data line

The start objective is the value of the objective at the initial a’,b’
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a*,b*and a, b : Results for axb* & X ((y-y’)/y’)?

Summary area

- . start a’ 1 10 0.10
Initial trial values
start b’ 1.00 10.00 0.10

Solver-found —optimal a* 1.93 1.93 1.93 1.93 _
best values | optimal b* 0.86 0.86 0.86 0.86

—

g

Initial & final start objective 11.01 26.11 62.97 5.41E+07
objective values | optimal objective ) 8.80 8.80 8.80 8.80

—

We see that
- « Initial trial values don't affect the Solver-identified a*, b*

- « a* b*improve the objective compared to all initial a’, b’, including the average a, b

O » Solver-identified a* b* are respectively less and greater than the average a and b
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Background

4/\
a xblogyax =g xxlogyh
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B
a*,b* and a,b6: Design for a-x* & X ((y-y’)/y’)?

Design
., , (@) b") (L5, -0.15) (1.5, -0.74) (2.5, -0.15) (2.5,-0.74) & =2.0, 5 = 0.4
y=ax—, 2y Wy) - xe{24 Tl 16 16 16 16 b =log »r: r < {0.60, 0.90)

- a x P generates the y values — prior design used a b*

» The best values of a and b minimize the sum of the squared “percentage errors,” where
the “percentage error” is relative to the “estimated” y’ — versus the “actual” y

« Among the 64 data lines

- 8are y=1.5x0.2-015
- 8arey= 1.5x0.4015
- 8arey=1.5x0.2-074

- 8arey= 1.5x0.4074
- etc.,

Noteworthy: We've subsequently seen that one replicate per a’,b’ pair gives the same results
as eight
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a*,b* and 3,6 : More About axx® & 2 ((y-y’)/y’)?

Design
(@, b") (1.5,-0.15) (1.5, -0.74) (2.5, -0.15) (2.5,-0.74) & =2.0,5 =-0.44

lines 16 16 16 16 b =log o r; re {0.60, 0.90}

y=ax", S(y-y")y') > xe{2,4)

* The X, b values here are related to the x, b values in the y=a b* work

- b values here are log, of those before: log, 0.6 ~ -0.74, log, 0.9 ~ -0.15; or 2074
~0.6,2015~0.9

- x values before are log, of x values here: log, 2 =1, log, 4 =2 —or 21 = 2, 2? = 4 ——
« The avalues are the same

When we relate the bs and xs this way — exponents in one form are log, of the base
values in the other form — we can show that the two formulas are equivalent and y
values are identical — i.e., equivalent ways of stating a learning curve. Allows us to
ask if we get the same a*,b* despite “surface differences” in the equation

Design

(@, b)) (1.5)o0.

X " 2 .9, .9, . é=2.0,5=0.75y

x=1log>q;q e {2 4}

wyle mum
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a*,b*and a,b : Results for a x x? & X ((y-y')/y’)?

Summary area

» . starta * 10 0

Initial trial values
startb * 3 2
Solver-found [ optimal a * 1.93 1.93 K pp—
best values optimal b * -0.22 -0.22 -0.22
Initial & final | start objective l 1.01 26.11 62.97 12.43
objective values | optimal objective 8.80 8.80 8.80 8.80
We see that

« [Initial trial values don’t affect the Solver-identified a* and b*

a*,b* improve the objective compared to that for the average a and b

« Solver-identified a*,b* are respectively less and greater than the average a and b
* a*b* are identical to y=axb* solutions after undoing log, transforms — 2-0-2 ~ 0.86

* Not immediately obvious the Solver would find the related b* values across the
equivalent but different equation forms for y

qll




Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Earlier Results for a xb X & 2 ((y-y’)/y’)?

Summary area

. : start a’
Initial trial values
start b’
Solver-found —optimal a*

best values | optimal b*

—

—

Initial & final start objective
objective values | optimal objective

—

2
0.75

1.00

1.93
0.86

26.11
8.80

10
10.00

1.93
0.86

62.97
8.80

0.10
0.10

1.93
0.86

5.41E+07
8.80

22
[ J—
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a*,b*and a,b: Set All a=2 Exercise

Set all a = 2 in the data set — which should further simplify the Solver’s problem — with
analogous results

* Initial trial values don’t affect the Solver-identified a* and b*
« a*,b*improve the objective compared to that for the average a and b
« a*b*are identical in y = axx? and y = axb* variants after undoing the log, b transform
« Solver-identified b* is greater than the average b; a* is less than 2, the average a
- a*=1.81 is slightly less than before; b* = 0.86 or -0.22 is identical

Design

. 2 (@,b") (2,0.6) (2,0.9) (2, 0.6) (2,0.9) a=20b6=075
y=ab" , Z((y-y)y')  xe{l2} jines 16 16 16 16 x=10g29;q e {2 4}
Design

(@,b") (2,-0.15 (2,-0.74) (2,-0.15) (2,-0.74) a=20,b6=-0.44
lines 16 16 16 16 b =log o r; r e {0.60, 0.90}

y=ax", S ((y-y"My") % xe{2.4)

e 23




Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

a*,b* and a,6: Results for X ((y-y’)ly’ )?

Analogous results in designs using a sum of eighth power errors

« [Initial trial values don’t affect the Solver-identified a* and b*

« a*,b*improve the objective compared to that for the average a and b

« a*b*are identical in y = axx? and y = axbX variants after undoing the log, b transform
» Solver-identified b* is greater than the average b; a* is less than the average a

Design
o (@, b") (15,06) (15,09 (2506) (2509 a=20b=075
X 1 1
y=ab", Z((y-y W), xe{1.2} lines 16 16 16 16 x=1logoq;qe{2 4
Design iE
b g (@, b") (1.5,-0.15) (1.5,-0.74) (2.5,-0.15) (2.5,-0.74) & =2.0,5=-0.44
y=ax, Z((y-y W) xe{24} e 16 16 16 16 b =log,r; r e {0.60, 0.90)
Design
X N (@,b") (2,0.6) (2,0.9) (2,0.6) (2,0.9) a=20b6=075
y:ab y 2:((y_y )/y) y X € {112} |ines 16 16 16 16 X=|ngq;q c {2’ 4}
Design $

(@ b" (2,-0.15) (2,-0.74) (2,-0.15) (2,-0.74) &=2.0,5=-0.44

b 8
=ax , Z(y-y'W') ,xe{24
y by Iy 24 Tines 16 16 16 16 b =log 2 r; r e {0.60, 0.90)

Wyle e
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a*,b* and a,b: Results for “unbalanced bs”

Design
X 5 (@', b (1506) (1509 (2.5 0.6) (2.5,0.9 a=20,6=0675
y=ab", Z((y-y)ly") »xe{l2} jines 24 8 24 8 x =109, q {2 4)
Design
X 5 (@', by (1506) (1509 (2.5 06) (25,0.9 a=20,b6=0.825
y=ab", 2((y-y)Wy)  xe{l2} jines 8 24 8 24 x=log,qqef2 4
Design
b 5 (@', b") (1.5,-0.74) (1.5, -0.15) (2.5,-0.74) (2.5,-0.15) & =2.0,b =-0.591
y=ax , Z(y-y)y') " xe{24} s 24 8 24 8 b =log,r;r e {0.60, 0.90)
Design
b 5 (@', b") (1.5,-0.74) (1.5, -0.15) (2.5,-0.74) (2.5,-0.15) & =2.0,b=-0.278
y=ax—, Z(-y)y) " xe{24}  ines 8 24 8 24 b =logr; r e {0.60, 0.90}

Analogous results in sum of “unbalanced-bs,” squared error designs

« Initial trial values don'’t affect the Solver-identified a*and b*

« a*,b*improve the objective compared to that for the average a and b

» Solver-identified a*, b* are both greater than the average a and b

+ a*b*are identical in y = axx? and y = axb* variants after undoing the log, b transform

wyle
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How Do a*,b* Relate to a,6? Summary

Function Obje.ctlve Other a a* b: b* Notes
function
o aef{1525}
y=ab ™ [T ((y-y')y") b < {0.6, 0.9} 2 1.925 0.75 0.861
all a=2 2 1.812 0.75 0.861
gl ae{15,25}
(v Wy < {0.6, 0.9} 2 1.940 0.750 0.834
all a=2 2 1003 | 0750 | 0793 | analogous results for
{1.5, 2.5} yoax
, N2 aec I, L.
= ((-y' W'Y |, c (0.6, 0.9: 3:1} 2 1.883 0.675 0.790
o ae{15,25}
= -y WYY |, < {0.6,0.9: 1:3} 2 2.020 0.825 0.889
Noteworthy

* a*and b* stay within the range of given values
- b* stays within [5, max(b)]; a* generally stays within [min(a), &]

w26
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On the average ©

When the objective is:

y*>y

2y-y)y)?

y*<y

2(y-y)y)?

® Arithmetic mean X (1/n) (y — y*) < 0
Geometric mean I (yy*) 1" <1
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y*>y When 2 ((y-y’)/v’)?: Examples
Design
(@, b") (15,06) (1509 (2506) (25009 &=206=0.75
lines 16 16 16 16 x=10g2q;q e {2 4}

y=ab™, S((y-y )W) % x € {12}

Design
(@) b") (1.5,-0.15) (1.5,-0.74) (2.5,-0.15) (2.5,-0.74) &a=2.0,5 =-0.44

lines 16 16 16 16 b =log,r; r e {0.60, 0.90}

y=ax", T((y-yWy") ° xe{2.4)

Summary area for both cases

start a 200 1.00 10.00 0.10
start b 0.75 1.00 10.00 0.10

optimal a 1.925 1.925 1.925 1.925
optimal b 0.861 0.861 0.861 0.861

( 1/n )
180 0.79 079 0.79 0.79

SAM)yy*) 021 -021 -0.21 -0.21
Noteworthy \. J

e Alsob*>b

w28
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But y* <y When 2/ ((y-y’)/y)?: Examples

Design
X 2 (@, b") (1506) (1509 (25 06) (2509 4a=205=075
y=ab”, Z((y-y)y) xe{l.2} Tjieg 16 16 16 16 x=10929; q e {2, 4}
Design
b 5 @, b") (1.5,-0.15) (1.5, -0.74) (2.5, -0.15) (2.5,-0.74) & =2.0,5 =-0.44
y=ax, 2((y-yVy) - xe{l.2} T oo 16 16 16 16 b =log»r: r < {0.60, 0.90}
Summary area
start a 2.00 1.00 10.00 0.10
start b 0.75 1.00 10.00 0.10
optimal a 1.948 1.948 1.948 1.948
optimal b 0.627 0.627 0.627 0.627
oy 1.26 126 126 1.26
>(/n)y-y*) 034 034 0.34 034
Noteworthy - /
« Also b*< b

29
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But y* < y When 2 ((y-y’)/y)?: More Examples

Design

. . (@,b") (1.506) (1509 (2506) (2509 a=205b=075
y=ab L) 2:((.y-.y9/.y) ,XE{l,Z} lines 16 16 16 16 X=|092q,q 6{2;‘
Design

(@, b") (15,0.6) (15,09 (25,0.6) (2.5,0.9 a8 =20,6=0.675
lines 24 8 24 8 x=log,q;q9 {2 -

y=ab*, £((y-y)1ly)", xe{1,2}

Design

(@, b") (15,0.6) (15,09 (250.6) (2.5,0.9 a =20 6=0.825
lines 8 24 8 24 x=log,q;q9 {2 -

y=ab*, =((y-y)1ly)", xe{1,2}

e 30
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|(y-y’)/e|: Absolute Value Objectives ¢

@ i g7 iS y Ol’y’

wyle e
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|(v-y’)/- |: Absolute Value Objectives @

- Absolute value objective functions give equal weight to y-y’
differences in determining a*,b*

- |(y-y*) /e | and its equivalent, ((y-y*) /e )2)9-2, gave identical results

- Some results followed the patterns we observed earlier

- 4,6 were never the best values for a,b
- Solver solutions a*,b* always had smaller objective function values

- (y-y) Iy’ | led to y*> y on the average
|(y-y’) ly | led to y*< y on the average

@ ll.Jl is y Or yl

Wyle
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l(y-y’)/. |: Absolute Value Objectives

- Other results didn’t follow earlier patterns

- Initial values for a’,b’ mattered for both y* and y as “e
- Each initial a’,b’ led to different a*,b*

- 4,6 initial values gave a* b* with the best objective function values

- Solver found different a* b* for y = axbX and for y = axx?

- These behaviors may pose challenges to those interested in
absolute value-type objective functions

Wyle o
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Solver Stops Early on Nonoptimal a*,b*

Wyle
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Solver Stops Early on Nonoptimal a*,b*

. |s the Solver-identified a* b* the best solution?

i -
Solver Results ﬁ
Solver has converged to the current solution. All
constraints are satisfied. Reports
Answer -
@ Keep Solver Solution! Sensitivity
> K ep Solver Solution: —
[ Restore Qriginal Values -
[ QK ] [ Cancel ] [ Save Scenario... ] [ Help ]

- Not always. We saw cases of “early convergence” to a “false” a*,b*

The Solver found a single a* b* for three of the initial a’,b’; with a better objective than the
“false” a*,b*

Running the Solver again with the “false” a* b* as the initial a’,b’ found the common a*,b*

We observed early convergence under Z((y—y’)/y’)2 for y = axbX with initial a’,b’= 0.1,0.1;
and for y = axx? with a’,b’= 0.1, log, 0.10 ~ -3.32)

Under Z((y—y’)/y)2 it occurred with10,10 and with 10, log,10 ~ 3.32, respectively

wyle
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Solver Stops Early: Example

Design
. e @ b’) (15 06) (15 09) (25 06) (2509 4a=20,5=075
y=ab”, 2((y-y)ly) xe{l.2} —icq 16 16 16 16 X=109,q:q c {2, 4)

From a’,b’= 0.10, 0.10, the Solver converges to false a*,b* = 0.954, 1.494

From a’,b’ = 0.954, 1.494, the Solver converges to the common a*b* = 1.925, 0.861; the
objective function improves from 12.43 to the common 8.80

Summary area

start a 2.00 1.00 10.00 0.10 0.954
start b 0.75 1.00 10.00 0.10 1.494
optimal a 1.925 1.925 1.925 0.954 1.925
optimal b 0.861 0.861 0.861 1.494 0.861
optimal objective  8.80 8.80 880 | 1243 | [ 880 |

Wyle o
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When the Solver Stops Early: One Clue )

- Reducing the convergence constant from 10-° to 10-'2 avoided the false
a*,b*

" .
Solver Options Iﬁ
Max Time: 1000 | seconds [ oK l
Iterations: 1000 | cancel |
Precision: 0.000001 | LoadModel... |
Tolerance: 0.000001 o [ Save Model, .. ]
) Convergence: 0. 000000000001 [ Help ]
[] Assume Linear Model Dgse Automatic Scaling
[] Assume Non-Megative [] show Iteration Results
Estimates Derivatives Search
@ Tangent @ Forward @ MNewton
() Quadratic () Central () Conjugate

e

- The convergence constant provides a stopping threshold; the Solver “converges” if
the relative change in the solution is no greater than the threshold
(http://office.microsoft.com/en-us/excel/HP100726911033.aspx)

wyle



Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

When the Solver Stops Early: One Clue ()

- We conjectured that early convergence reflected a relative “flat zone” in
the objective function surface — versus a local minimum

" -
Solver Options @
Max Time: 1000 | seconds [ Ok l
Iterations: 1000 [ Cancel |
Predsion: 0.000001 | LoadModel... |
Tolerance: 0.000001 % | SaveModel.. |
) Convergence: 0.,000000020001 [ Help ]
[ Assume Linear Model [ liUse Automatic Scaling:
[] Assume Mon-Negative [] Show Iteration Results
Estimates Derivatives Search
(@ Tangent i@ Forward (@ MNewton
(7 Quadratic (") Central (7 Conjugate

- Reducing the convergence constant allows the Solver to continue solving
in the presence of only “modest” improvements in the objective

Wyle o
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When the Solver Stops Early: One Clue 3

- We plotted the a’,b’ over Solver iterations

Design

. » @ b’) (15,06) (1509 (25 06) (2509 4a=2005=075
y=ab", Z((y-y)y") " x e {12} 7 g 16 16 16 16 x=10g5q;q e {2 4

Wyle e




1.8

1.2 -

0.6 -

0.0

- Solving with 10-'2 convergence finds the common a* b*in one run

- The two a’,b’ paths are similar but not identical after the restart point —
compare the eighth through fifteenth points on both paths

- 10-2 convergence stops in one fewer iteration
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When the Solver Stops Early: One Clue 3

a'b’ Iterations: 107° Early Convergence

0.0

0.5

1.5

2.0

1.8

a'b’ Iterations: 10'12 Convergence

0.5

1.5

wyle
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When the Solver Stops Early: One Clue ()

a,b’ Iterations: 10'6 Early Convergence

0.6

0.0
0.0 0.5 1.0 1.5 2.0

Wyle
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When the Solver Stops Early: One Clue

ab’' lterations: 10'12 Convergence

0.6

O-O I I I I
0.0 0.5 1.0 1.5 2.0
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Two Cases of Lognormal Data

w43
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What About Lognormal Data 71

* Previously worked with uniform xs in the data
- x=2o0r 4in equal numbers, b=0.6 or 0.9 in varying mixtures
Design

. ,2 (@ b") (15 06) (1509 (2506) (2509) 4&=205=075
y=ab", Z((y-y)y’) " x € {12} Tjieg 16 16 16 16 x=10g,q;q c 2 4)

- Results roughly met our “naive” expectations

- b*greater than b but tracked changes to b as we varied
the mixture of 0.6s and 0.9s in the data set

wyle
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What About Lognormal Data ?

* In this excursion we work with xs that are a
lognormal sample or are derived from lognormal

samples

Design

y=ab™. = ((y-y W") 2 (@,b’) (15,06) (1509) (2506) (2509) 4a=206=075

x=log 7 (q samples)

lines 20(xs) 21(xs) 22(xs) 23 (xs)
qg~In(u=2, 0 =1)

Design
b . a,b") (1.5,-0.15) (1.5,-0.74) (2.5, -0.15) (2.5,-0.74) & =20,5=-0.44
max® 3y Yy (a3 b) ( ) ( ) ( ) ( )
x~In(u =2,0 =1) lines 20(xs) 21(xs) 22(xs) 23(xs) b =log o r; r e {0.60, 0.90}
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What About Lognormal Data ? s

 Results were generally consistent with earlier results
- The common b*for axbX was greater than the average b

- The common a*b*was identical for axb* and axx? after
undoing the log, b transform

* Unlike the earlier results
- The common a*was greater than the average a

Wyle o
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Summary ¢

- We've observed a number of behaviors in a simple environment -
which may or may not generalize to “practical” environments or
to more general environments. Among them:

- When we used a 2(y — y))/y’)? objective function, b* was greater than the
average b; and y*>y

We reversed these results for for a X((y — y*)/y)2 objective

- The average a and b were always good starting points

- The Solver converged early for some initial a’,b’; restarting the Solver from
the “false” a* b* found the common — and better — a* b*
We avoided the early stop by reducing the Solver’s “convergence constant”

We made it practice to re-run the Solver several times in all cases; one rerun
was usually enough — but not always

Wyle
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Summary (2

- We've observed a number of behaviors in a simple environment -
which may or may not generalize to “practical” environments or
to more general environments. Among them:

- Initial @’,b’ did not affect the final results with Z((y-y*)/y*)X, k € (2,8)
- Initial &’,b’ did affect results when we used an absolute value objective

function — X|(y-y*)y*| or Z(((y-y*)/y*)?)%-° — Solver identified a different
a* b* for each initial a’,b’

e 48
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Moving Forward

- Catalog key theoretical concepts on fitting power and exponential
functions

- Use these theory to drive further empirical tests

- Catalog lessons learned from these exercises
- Use these empirical results to drive investigations into theory

- Address the question of when and why you should want to use
power and exponential functions
- We should want a priori conditions

. Statistical goodness-of-fit tests provide a posteriori rationale; may be
“hijacked” by “unusual data”; and still leave open the “why” question

- The math/economics/psychology literature on measurement scale
theory provides a solid starting point

wyle mum
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The End

50
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Additional Discussions
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o TNN———————
Why We Studied “Nonlinear Methods”

and the Solver in Particular

 Why study iterative, “only approximate,” clearly imperfect
methods for fitting model constants when we can always solve
linear, log-transformed models?

- Not all interesting CERs with exponential and power form
components will be “log transformable”

- Log transform approaches have their own properties - which are
not in the scope of this report - not all of which may be desirable

- Iterative methods, including the Solver, have a user community
convinced about their utility

- The project goal is to document methods’ characteristics and not to
make the case for one method or another as being the best




Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

TN
A Subtlety

* In “ordinary” regression analyses we:

- assume a single value for a and for b drive the ys

- disturbances in the ys we observe prevent us from identifying a and
b exactly; we can only estimate a and b only with uncertainty

- we term the data “noisy but homogeneous”
* Here, the regression data are perfect but heterogeneous:

— each line has varying as and bs
— we exactly calculate y on each line from the given a, b, and x values

— we search for a single value for a and for b that together, “best
represent” the differing a,b pairs in the data set

— the errors are due, in principle, to the inability of any one a, b pair
to represent the differing a,b pairs in the data

— when the data set comprises different types of articles we consider
the data set heterogeneous

wyle






