Multiplicative-Form CERs: A Progress Review

Mitch Robinson, D.Sc.
Eric Mosier

Project Motivations and Goals

$>$ The exponential function, $y=a \times x^{b}$, and the power function, $y=a \times b^{c x}$, are increasingly popular model forms for CER development
$>$ The Excel Solver has put the ease of fitting these model forms on a par with linear regressions

- Little training is necessary to "push the [Solve] button"
$>$ However, the math of "multiplicative CERs" is less easy and knowledge about them is less widespread than their linear regression cousins
- Compare courses you've taken; books on your shelf
$>$ Now is a good time to bring together key facts and lessons about working with these functions

Today's Work

> Report findings on model fitting exercises

- Defer "theoretical" work for later
" "Practical" exercises often surprise
$>$ Keep the initial focuses simple and practical
" Fit model parameters - "constants" - with the Excel Solver
- Vary:
- Model constants a and b in an artificial data set - let $c=1$
- Initial trial values the Solver uses for the model constants
- Objective functions - the criteria for "best" model constants
- Solver option settings
$>$ Observe useful and interesting results
- How do the fitted constants relate to the constants in the data set?
- How do the initial model constants affect the results?
- How do different Solver option settings affect the results?
- How do different objective functions affect the results?

Exercise Procedures

Exercise Procedures

- Design a data set of as, bs, and x s
- Spreadsheet formulas populate the y s

Data area for $y=a x^{b}$

a	x	b	$y=a x^{b}$
1.50	2.00	-0.74	0.90
1.50	4.00	-0.74	0.54
1.50	2.00	-0.15	1.35
1.50	4.00	-0.15	1.22
2.50	2.00	-0.74	1.50
2.50	4.00	-0.74	0.90
2.50	2.00	-0.15	2.25
2.50	4.00	-0.15	2.03

Exercise Procedures

- Provide starting values a^{\prime}, b^{\prime} for a, b
- Spreadsheet formulas populate y^{\prime} and error functions

Working area

a^{\prime}	1.00000	x	$y^{\prime}=a^{\prime} x^{b^{\prime}}$	y	$\left(y-y^{\prime}\right) / y^{\prime}$	$\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$
b^{\prime}	0.00000	2.00	1.00	0.90	-0.10	0.01
		4.00	1.00	0.54	-0.46	0.21
		2.00	1.00	1.35	0.35	0.12
		4.00	1.00	1.22	0.22	0.05
		2.00	1.00	1.50	0.50	0.25
		4.00	1.00	0.90	-0.10	0.01
		2.00	1.00	2.25	1.25	1.56
		4.00	1.00	2.03	1.03	1.05

Exercise Procedures

- Formulas populate the objective and other error summaries

Working area

Exercise Procedures

- Run the Solver to find a^{*}, b^{*} that minimize the objective

Visit http://www.solver.com/tutorial.htm for background info

Exercise Procedures

- Set the Solver options

Visit http://wwww.solver.com/tutorial.htm for background info

Exercise Procedures

- Record the results for different initial values for a^{\prime}, b^{\prime}

Summary area

Exercise Summary Template

Model function

Data set x values equally represented in all (a, b) pairs

Data set (a, b) pairs
\downarrow

$\left(a^{\prime}, b^{\prime}\right)$	$(\mathbf{1 . 5}, \mathbf{0 . 6})$	$(\mathbf{1 . 5}, 0.9)$
lines	16	16

1616

Number of
occurrences in the
data set

Example:
Data set
includes
$y=2.5 \times 0.9^{x}$
$(2.5,0.9)$
16
\uparrow
... repeated
8 times with
$x=1$ and 8
with $x=2$

- a^{\prime}, b^{\prime} are trial values for $a, b ; y^{\prime}$ is the associated y value
- a^{*}, b^{*} are trial a, b values that minimize the objective function; y^{*} is the associated "best" y value

Results Overview

Results Overview (1)

- a^{*}, b^{*} were always different from the average a, b in the data set
- $b^{*}>Б$ when we used the objective function $\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$
- $b^{*}<Б$ when we used the objective function $\Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}$
- On the average, $\mathrm{y}^{*}>\mathrm{y}$ when we used the objective function $\sum\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$ and $y^{*}<y$ with the objective function $\sum\left(\left(y-y^{\prime}\right) / y\right)^{2}$
- The a^{\prime}, b^{\prime} we used to start the Solver tended to not make a difference in the Solver-identified a^{*}, b^{*}, but
- In some cases the Solver identified a "false a^{*}, b^{*} "; but restarting it from this "false" a^{*}, b^{*} led to an improved a^{*}, b^{*}
- Reducing the "convergence parameter" in the Solver options avoided this "early convergence"

Results Overview (2)

- Objective functions incorporating absolute values of $y-y^{\prime}$ were often ill-behaved in some areas
- Initial a^{\prime}, b^{\prime} made a difference in the Solver-identified a^{*}, b^{*} in every case

How Do a*,b* Relate to $\bar{a}, \bar{\square}$?

a^{*}, b^{*} versus $\bar{a}, ~ Б: D e s i g n ~ f o r ~ a \times b^{x} \& \Sigma\left(\left(y-y^{3}\right) / y^{\prime}\right)^{2}$

Design

- $a b^{x}$ generates the y value and $a^{\prime} x^{b^{\prime}}$ generates the y^{\prime} values
- The best values of a and b minimize the sum of the squared "percentage errors," where the "percentage error" is relative to the estimated y ' - versus the actual y
- Among the 64 data lines
- 8 are $y=1.5 \times 0.6^{1}$
- 8 are $y=1.5 \times 0.6^{2}$
- 8 are $y=1.5 \times 0.9^{1}$
- 8 are $y=1.5 \times 0.9^{2}$
- etc.

Noteworthy: We've subsequently seen that one replicate per a',b' pair gives the same results as eight

a^{*}, b^{*} and $\bar{a}, \mathrm{~b}:$ More About $a \times b^{x} \& \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$

Summary area

Initial trial values	2	1	10	0.10
start b^{\prime}	0.75	1.00	10.00	0.10
Solver-found \quad optimal ${ }^{*}$	1.93	1.93	1.93	1.93
best values Optimal b^{*}	0.86	0.86	0.86	0.86
Initial \& final \quad start objective	11.01	26.11	62.97	$5.41 \mathrm{E}+07$
objective values optimal objective	8.80	8.80	8.80	8.80

We provide the Solver four different sets of initial trial values, a ' and b ' - in case this affects the a^{*} and b^{*} values it finds

The first initial trial values are the average a and the average b
For each a^{\prime} and b^{\prime} trial value in Solver there is a value of the objective function, $\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$ where $y^{\prime}=a^{\prime} \times b^{\prime x}$ for the x value on each data line The start objective is the value of the objective at the initial a ', b^{\prime}

a^{*}, b^{*} and $\overline{\mathrm{a}}, \overline{5}:$ Results for $a \times b^{x} \& \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$

Summary area

Initial trial values
start a^{\prime}
start b^{\prime}
Solver-found
best values $\quad\left\{\begin{array}{l}\text { optimal } a^{*} \\ \text { optimal } b^{*}\end{array}\right.$
Initial \& final
objective values $\left\{\begin{array}{l}\text { start objective } \\ \text { optimal objective }\end{array} \longrightarrow \begin{array}{cccc}11.01 & 26.11 & 62.97 & 5.41 \mathrm{E}+07 \\ 8.80 & 8.80 & 8.80 & 8.80\end{array}\right.$

We see that

- Initial trial values don't affect the Solver-identified a^{*}, b^{*}
- a^{*}, b^{*} improve the objective compared to all initial a^{\prime}, b^{\prime}, including the average a, b
- Solver-identified a^{*}, b^{*} are respectively less and greater than the average a and b

Background

$a \times b \log _{2} \times a \times x^{\log _{2} b}$

a^{*}, b^{*} and $\bar{a}, \overline{,}$: Design for $a \times x^{b} \& \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$

Design

- $a x^{b}$ generates the y values - prior design used $a b^{x}$
- The best values of a and b minimize the sum of the squared "percentage errors," where the "percentage error" is relative to the "estimated" y ' - versus the "actual" y
- Among the 64 data lines
- 8 are $y=1.5 \times 0.2^{-0.15}$
- 8 are $y=1.5 \times 0.4^{-0.15}$
- 8 are $y=1.5 \times 0.2^{-0.74}$
- 8 are $y=1.5 \times 0.4^{-0.74}$
- etc.,

Noteworthy: We've subsequently seen that one replicate per a',b' pair gives the same results as eight

a^{*}, b^{*} and $\overline{\mathrm{a}}, \mathrm{E}:$ More About $\mathrm{a} \times x^{b} \& \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$

Design

- The x, b values here are related to the x, b values in the $y=a b^{x}$ work
- b values here are $\log _{2}$ of those before: $\log _{2} 0.6 \approx-0.74, \log _{2} 0.9 \approx-0.15$; or $2^{-0.74}$ \qquad $\approx 0.6,2^{-0.15} \approx 0.9$
- x values before are $\log _{2}$ of x values here: $\log _{2} 2=1, \log _{2} 4=2-$ or $2^{1}=2,2^{2}=4$
- The a values are the same

When we relate the b s and x s this way - exponents in one form are $\log _{2}$ of the base values in the other form - we can show that the two formulas are equivalent and y values are identical - i.e., equivalent ways of stating a learning curve. Allows us to ask if we get the same a^{*}, b^{*} despite "surface differences" in the equation

Design

a^{*}, b^{*} and $\bar{a}, \overline{5}:$ Results for $a \times x^{b} \& \Sigma\left(\left(y-y^{3}\right) / y^{\prime}\right)^{2}$

Summary area

Initial trial values | start a * |
| :--- |
| start b * |

Solver-found
best values $\left\{\begin{array}{l}\text { optimal a * } \\ \text { optimal b * }\end{array}\right.$
$\left.\begin{array}{l}\text { Initial \& final } \\ \text { objective values }\end{array} \begin{array}{l}\text { start objective } \\ \text { optimal objective }\end{array} \longrightarrow \begin{array}{c}11.01 \\ 8.80\end{array}\right)$

1
0
1.93
-0.22
26.11
8.80

10
3 1.93
-0.22
62.97
8.80

0
2
1.93
-0.22
12.43
8.80

We see that

- Initial trial values don't affect the Solver-identified a^{*} and b^{*}
- a^{*}, b^{*} improve the objective compared to that for the average a and b
- Solver-identified $\mathrm{a}^{*}, \mathrm{~b}^{*}$ are respectively less and greater than the average a and b
- a^{*}, b^{*} are identical to $y=a \times b^{x}$ solutions after undoing $\log _{2}$ transforms $-2^{-0.22} \approx 0.86$
- Not immediately obvious the Solver would find the related b^{*} values across the equivalent but different equation forms for y

Earlier Results for $\mathbf{a} \times \boldsymbol{b}^{\boldsymbol{x}} \& \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$

Summary area				
Initial trial values	2	1	10	0.10
start b^{\prime}	0.75	1.00	10.00	0.10
Solver-found best values	1.930.86	1.93	1.93	1.93
		0.86	0.86	0.86
Initial \& final \quad start objective	$\binom{11.01}{8.80}$	26.11	62.97	5.41E+07
objective values optimal objective		8.80	8.80	8.80

a^{*}, b^{*} and $\bar{a}, Б:$ Set All $a=2$ Exercise

Set all a = 2 in the data set - which should further simplify the Solver's problem - with analogous results

- Initial trial values don't affect the Solver-identified a^{*} and b^{*}
- a^{*}, b^{*} improve the objective compared to that for the average a and b
- a^{*}, b^{*} are identical in $y=a \times x^{b}$ and $y=a \times b^{x}$ variants after undoing the $\log _{2} b$ transform
- Solver-identified b^{*} is greater than the average $b ; a^{*}$ is less than 2 , the average a
$-a^{*}=1.81$ is slightly less than before; $b^{*}=0.86$ or -0.22 is identical

Design

$y=a b^{\boldsymbol{x}}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{1,2\}$| $\left(a^{\prime}, b^{\prime}\right)$ | $(2,0.6)$ | $(2,0.9)$ | $(2,0.6)$ | $(2,0.9)$ | $\bar{a}=2.0,5=0.75$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | lines | 16 | 16 | 16 | 16 | | $x=\log _{2} q ; q \in\{2,4\}$ |
| :--- |

Design

$y=a x^{b}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{2,4\}$| $\left(a^{\prime}, b^{\prime}\right)$ | $(2,-0.15)$ | $(2,-0.74)$ | $(2,-0.15)$ | $(2,-0.74)$ | $\bar{a}=2.0, Б=-0.44$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | lines | 16 | 16 | 16 | 16 | $b=\log _{2} r ; r \in\{0.60,0.90\}$ |

a^{*}, b^{*} and $\bar{a}, \bar{\square}:$ Results for $\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{8}$

Analogous results in designs using a sum of eighth power errors

- Initial trial values don't affect the Solver-identified a^{*} and b^{*}
- a^{*}, b^{*} improve the objective compared to that for the average a and b
- a^{*}, b^{*} are identical in $y=a \times x^{b}$ and $y=a \times b^{x}$ variants after undoing the $\log _{2} b$ transform
- Solver-identified b^{*} is greater than the average $b ; a^{*}$ is less than the average a

Design

	(a^{\prime}, b^{\prime})	$(1.5,0.6)$	$(1.5,0.9)$	$(2.5,0.6)$	$(2.5,0.9)$	$\bar{a}=2.0,5=0.75$
$y=a^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right) \widehat{\Lambda}^{8}, x \in\{1,2\}$	lines	16	16	16	16	$x=\log _{2} q ; q \in\{2,4\}$
Design						$\bar{a}=2.0, \bar{b}=-0.44$
$y=a x^{b}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{8}, x \in\{2,4\}$	lines	16	16	(16	$\frac{5,-0.74)}{16}$	$b=\log _{2} r ; r \in\{0.60,0.90\}$

Design

a*,b* and $\bar{a}, Б:$ Results for "unbalanced bs"

Design

$$
y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{1,2\} \begin{array}{cccccc}
\left(a^{\prime}, b^{\prime}\right) & (1.5,0.6) & (1.5,0.9) & (2.5,0.6) & (2.5,0.9) & \bar{a}=2.0, Б=0.675 \\
\cline { 2 - 6 } & \text { lines } & 24 & 8 & 24 & 8 \\
x=\log _{2} q ; q \in\{2,4\}
\end{array}
$$

Design

$$
y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{1,2\} \begin{array}{cccccc}
\left(a^{\prime}, b^{\prime}\right) & (1.5,0.6) & (1.5,0.9) & (2.5,0.6) & (2.5,0.9) & \bar{a}=2.0, Б=0.825 \\
\cline { 2 - 6 } & \text { lines } & 8 & 24 & 8 & 24
\end{array} \begin{aligned}
& x=\log _{2} q ; q \in\{2,4\}
\end{aligned}
$$

Design

Design

$$
y=a x^{b}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{2,4\}
$$

Analogous results in sum of "unbalanced-bs," squared error designs

- Initial trial values don't affect the Solver-identified a^{*} and b^{*}
- a^{*}, b^{*} improve the objective compared to that for the average a and b
- Solver-identified $\mathrm{a}^{*}, \mathrm{~b}^{*}$ are both greater than the average a and b
- a^{*}, b^{*} are identical in $y=a \times x^{b}$ and $y=a \times b^{x}$ variants after undoing the $\log _{2} b$ transform

How Do a*, b* Relate to ā, $\overline{\text { }}$? Summary

Function	Objective function	Other	\bar{a}	a*	$\bar{\square}$	b^{*}	Notes
$y=a b^{x}$	$\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$	$\begin{aligned} & a \in\{1.5,2.5\} \\ & b \in\{0.6,0.9\} \end{aligned}$	2	1.925	0.75	0.861	analogous results for$y=a x^{b}$
		all a=2	2	1.812	0.75	0.861	
	$\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{8}$	$\begin{aligned} & a \in\{1.5,2.5\} \\ & b \in\{0.6,0.9\} \end{aligned}$	2	1.940	0.750	0.834	
		all $\mathrm{a}=2$	2	1.903	0.750	0.793	
	$\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$	$\left\|\begin{array}{c} a \in\{1.5,2.5\} \\ b \in\{0.6,0.9: 3: 1\} \end{array}\right\|$	2	1.883	0.675	0.790	
	$\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$	$\left\|\begin{array}{c} a \in\{1.5,2.5\} \\ b \in\{0.6,0.9: 1: 3\} \end{array}\right\|$	2	2.020	0.825	0.889	

Noteworthy

- a^{*} and b^{*} stay within the range of given values
- b^{*} stays within $[\square, \max (b)] ; a^{*}$ generally stays within [min(a), $\left.\bar{a}\right]$

On the average ${ }^{\oplus}$ When the objective is:

$$
\begin{array}{l|l}
y^{*}>y & \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2} \\
\hline y^{*}<y & \Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}
\end{array}
$$

${ }^{\oplus}$ Arithmetic mean $\Sigma(1 / n)\left(y-y^{*}\right)<0$
Geometric mean $\Pi\left(y / y^{\star}\right)^{1 / n}<1$

$y^{*}>y$ When $\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$: Examples

> Design $y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{1,2\}$| $\left(a^{\prime}, b^{\prime}\right)$ | $(\mathbf{1 . 5 , 0 . 6})$ | $(1.5,0.9)$ | $(2.5,0.6)$ | $(2.5,0.9)$ | $\bar{a}=2.0,5=0.75$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | lines | 16 | 16 | 16 | 16 | $\begin{aligned} & x=\log _{2} q ; q \in\{2,4\}\end{aligned}$ Design

Summary area for both cases

start a	2.00	1.00	10.00	0.10
start b	0.75	1.00	10.00	0.10
optimal a	1.925	1.925	1.925	1.925
optimal b	0.861	0.861	0.861	0.861
$\Pi\left(y / y^{*}\right)^{1 / n}$	0.79	0.79	0.79	0.79
$\sum(1 / n)\left(y-y^{*}\right)$	-0.21	-0.21	-0.21	-0.21

Noteworthy

- Also b* b $^{\text {- }}$

But $y^{*}<y$ When $\Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}$: Examples

Design

	(a^{\prime}, b^{\prime})	(1.5, 0.6)	$(1.5,0.9)$	(2.5, 0.6)	$(2.5,0.9)$	$\bar{a}=2.0, \overline{5}=0.75$
$y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}, x \in\{1,2\}$	lines	16	16	16	16	$x=\log _{2} q ; q \in\{2,4\}$

Design

Summary area

start a	2.00	1.00	10.00	0.10
start b	0.75	1.00	10.00	0.10
optimal a	1.948	1.948	1.948	1.948
optimal b	0.627	0.627	0.627	0.627
$\Pi\left(y / y^{*}\right)^{1 / n}$	1.26	1.26	1.26	1.26
$\Sigma(1 / n)\left(y-y^{*}\right)$	0.34	0.34	0.34	0.34

Noteworthy

- Also b* < Б

But $y^{*}<y$ When $\Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}$: More Examples

Design						
	(a^{\prime}, b^{\prime})	$(1.5,0.6)$	$(1.5,0.9)$	$(2.5,0.6)$	$(2.5,0.9)$	$\bar{a}=2.0, \bar{B}=0.75$
$y=a b^{x}, \Sigma((y-y) / y)^{8}, x \in\{1,2\}$	lines	16	16	16	16	$x=\log _{2} q ; q \in\{2$,

Design

$$
y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) l y\right)^{2}, x \in\{1,2\} \begin{array}{cccccc}
\left(a^{\prime}, b^{\prime}\right) & (1.5,0.6) & (1.5,0.9) & (2.5,0.6) & (2.5,0.9) & \bar{a}=2.0, Б=0.675 \\
\left.\cline { 2 - 6 } \begin{array}{ll}
\text { lines } & 24 \\
x=\log _{2} q ; q & 8
\end{array}\right\}\{2, \text { ، }
\end{array}
$$

Design

$$
y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}, x \in\{1,2\} \begin{array}{cccccc}
\left(a^{\prime}, b^{\prime}\right) & (1.5,0.6) & (1.5,0.9) & (2.5,0.6) & (2.5,0.9) & \bar{a}=2.0,5=0.825 \\
124 & 8 & 24 & 8 & 24 & x=\log _{2} q ; q \in\{2, \text { ، }
\end{array}
$$

$\left|\left(y-y^{\prime}\right) / \rho\right|:$ Absolute Value Objectives ${ }^{\oplus}$

\oplus "•" is y or y "

$\left|\left(y-y^{\prime}\right) / \bullet\right|:$ Absolute Value Objectives ${ }^{\oplus}{ }_{(1)}$

- Absolute value objective functions give equal weight to $y-y^{\prime}$ differences in determining a^{*}, b^{*}
- $\left|\left(y-y^{*}\right) / \bullet\right|$ and its equivalent, $\left.\left(\left(y-y^{*}\right) / \bullet\right)^{2}\right)^{0.5}$, gave identical results
- Some results followed the patterns we observed earlier
- \bar{a}, \bar{B} were never the best values for a, b
- Solver solutions a^{*}, b^{*} always had smaller objective function values
- |(y-y')/y'|led to $y^{*}>y$ on the average $\left|\left(y-y^{\prime}\right) / \boldsymbol{y}\right|$ led to $y^{*}<y$ on the average

$\left|\left(y-y^{\prime}\right) / \bullet\right|:$ Absolute Value Objectives ${ }_{(2)}$

- Other results didn't follow earlier patterns
- Initial values for a^{\prime}, b^{\prime} mattered for both y^{*} and y as "•"
- Each initial a^{\prime}, b^{\prime} led to different a^{*}, b^{*}
- \bar{a}, \bar{B} initial values gave a^{*}, b^{*} with the best objective function values
- Solver found different a^{*}, b^{*} for $y=a \times b^{x}$ and for $y=a \times x^{b}$
- These behaviors may pose challenges to those interested in absolute value-type objective functions

Solver Stops Early on Nonoptimal a*,b*

Solver Stops Early on Nonoptimal a*, b*

- Is the Solver-identified a^{*}, b^{*} the best solution?

- Not always. We saw cases of "early convergence" to a "false" a*, b*
- The Solver found a single a^{*}, b^{*} for three of the initial a^{\prime}, b^{\prime}; with a better objective than the "false" a^{*}, b^{*}
- Running the Solver again with the "false" a^{*}, b^{*} as the initial a^{\prime}, b^{\prime} found the common a^{*}, b^{*}
- We observed early convergence under $\Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$ for $\mathrm{y}=a \times b^{x}$ with initial $a^{\prime}, b^{\prime}=0.1,0.1$; and for $y=a \times x^{b}$ with $a^{\prime}, b^{\prime}=0.1, \log _{2} 0.10 \approx-3.32$)
- Under $\Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}$ it occurred with 10,10 and with $10, \log _{2} 10 \approx 3.32$, respectively

Solver Stops Early: Example

Design

$$
y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y\right)^{2}, x \in\{1,2\} \begin{array}{cccccc}
\left(a^{\prime}, b^{\prime}\right) & (1.5,0.6) & (1.5,0.9) & (2.5,0.6) & (2.5,0.9) & \bar{a}=2.0,5=0.75 \\
\cline { 2 - 6 } & \text { lines } & 16 & 16 & 16 & 16
\end{array} \begin{aligned}
& x=\log _{2} q ; q \in\{2,4\}
\end{aligned}
$$

- From $a^{\prime}, b^{\prime}=0.10,0.10$, the Solver converges to false $a^{*}, b^{*}=0.954,1.494$
- From $a^{\prime}, b^{\prime}=0.954,1.494$, the Solver converges to the common $a^{*}, b^{*}=1.925,0.861$; the objective function improves from 12.43 to the common 8.80

Summary area

start a	2.00	1.00	10.00	0.10	0.954
start b	0.75	1.00	10.00	0.10	11.494
optimal a	1.925	1.925	1.925	0.954	1.925
optimal b	0.861	0.861	0.861	1.494	0.861
optimal objective	8.80	8.80	8.80	12.43	8.80

When the Solver Stops Early: One Clue (1)

- Reducing the convergence constant from 10^{-6} to 10^{-12} avoided the false a^{*}, b^{*}

- The convergence constant provides a stopping threshold; the Solver "converges" if the relative change in the solution is no greater than the threshold (http://office.microsoft.com/en-us/excel/HP100726911033.aspx)

When the Solver Stops Early: One Clue (2)

- We conjectured that early convergence reflected a relative "flat zone" in the objective function surface - versus a local minimum

- Reducing the convergence constant allows the Solver to continue solving in the presence of only "modest" improvements in the objective

When the Solver Stops Early: One Clue (3)

- We plotted the a^{\prime}, b^{\prime} over Solver iterations

Design

$y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{1,2\}$| $\left(a^{\prime}, b^{\prime}\right)$ | $(1.5,0.6)$ | $(1.5,0.9)$ | $(2.5,0.6)$ | $(2.5,0.9)$ | $\bar{a}=2.0,5=0.75$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | lines | 16 | 16 | 16 | 16 | $\begin{aligned} & x=\log _{2} q ; q \in\{2,4\}\end{aligned}$

When the Solver Stops Early: One Clue (3)

- Solving with 10^{-12} convergence finds the common a^{*}, b^{*} in one run
- The two a',b' paths are similar but not identical after the restart point compare the eighth through fifteenth points on both paths
- 10^{-12} convergence stops in one fewer iteration

When the Solver Stops Early: One Clue (4)

a^{\prime}, b^{\prime} Iterations: 10^{-6} Early Convergence

When the Solver Stops Early: One Clue (5)

Two Cases of Lognormal Data

What About Lognormal Data ?(1)

- Previously worked with uniform $x s$ in the data
- $\boldsymbol{x}=\mathbf{2}$ or $\mathbf{4}$ in equal numbers, $\boldsymbol{b}=\mathbf{0 . 6}$ or 0.9 in varying mixtures

Design

$$
y=a b^{x}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}, x \in\{1,2\} \begin{array}{cccccc}
\left(a^{\prime}, b^{\prime}\right) & (1.5,0.6) & (1.5,0.9) & (2.5,0.6) & (2.5,0.9) & \bar{a}=2.0,5=0.75 \\
\text { lines } & 16 & 16 & 16 & 16 & x=\log _{2} q ; q \in\{2,4\}
\end{array}
$$

- Results roughly met our "naive" expectations
- b* greater than $\bar{\square}$ but tracked changes to $\bar{\square}$ as we varied the mixture of 0.6 s and 0.9 s in the data set

What About Lognormal Data ? ${ }_{(2)}$

- In this excursion we work with xs that are a lognormal sample or are derived from lognormal samples

Design

$$
y=a b^{x}, \Sigma\left((y-y) / y^{\prime}\right)^{2}
$$

(a^{\prime}, b^{\prime})	$(1.5,0.6)$	$(1.5,0.9)$	$(2.5,0.6)$	$(2.5,0.9)$	$\bar{a}=2.0, \bar{\square}=0.75$
lines	20 (xs)	21 (xs)	22 (xs)	23 (xs)	$\begin{aligned} & x=\log _{2}(q \text { samples }) \\ & q \sim \ln (\mu=2, \sigma=1) \end{aligned}$

Design

$$
\begin{aligned}
& y=a x^{b}, \Sigma\left(\left(y-y^{\prime}\right) / y^{\prime}\right)^{2} \\
& x \sim \ln (\mu=2, \sigma=1)
\end{aligned}
$$

| $\left(a^{\prime}, b^{\prime}\right)(1.5,-0.15)(1.5,-0.74)(2.5,-0.15)(2.5,-0.74)$ | $\bar{a}=2.0,5=-0.44$ |
| :--- | :--- | :--- | :--- | :--- |
| lines $20(x s) 21(x s) 22(x s) 23(x s)$ | $b=\log _{2} r ; r \in\{0.60,0.90\}$ |

What About Lognormal Data ?(3)

- Results were generally consistent with earlier results
- The common \boldsymbol{b}^{*} for $\mathbf{a} \times \boldsymbol{b}^{\boldsymbol{x}}$ was greater than the average \boldsymbol{b}
- The common a^{*}, b^{*} was identical for $a \times b^{x}$ and $a \times x^{b}$ after undoing the $\log _{2} b$ transform
- Unlike the earlier results
- The common a* was greater than the average a

Summary (1)

- We've observed a number of behaviors in a simple environment which may or may not generalize to "practical" environments or to more general environments. Among them:
- When we used a $\left.\Sigma\left(y-y^{\prime}\right) / y^{\prime}\right)^{2}$ objective function, b^{*} was greater than the average b; and $y^{*}>y$
We reversed these results for for a $\Sigma\left(\left(y-y^{*}\right) / y\right)^{2}$ objective
- The average a and b were always good starting points
- The Solver converged early for some initial a',b'; restarting the Solver from the "false" a^{*}, b^{*} found the common - and better - a^{*}, b^{*}

We avoided the early stop by reducing the Solver's "convergence constant" We made it practice to re-run the Solver several times in all cases; one rerun was usually enough - but not always

Summary ${ }_{(2)}$

- We've observed a number of behaviors in a simple environment which may or may not generalize to "practical" environments or to more general environments. Among them:
- Initial a^{\prime}, b^{\prime} did not affect the final results with $\Sigma\left(\left(y-y^{*}\right) / y^{*}\right)^{k}, k \in(2,8)$
- Initial a^{\prime}, b^{\prime} did affect results when we used an absolute value objective function - $\Sigma\left|\left(y-y^{*}\right) / y^{*}\right|$ or $\Sigma\left(\left(\left(y-y^{*}\right) / y^{*}\right)^{2}\right)^{0.5}$ - Solver identified a different a^{*}, b^{*} for each initial a^{\prime}, b^{\prime}

Moving Forward

- Catalog key theoretical concepts on fitting power and exponential functions
- Use these theory to drive further empirical tests
- Catalog lessons learned from these exercises
- Use these empirical results to drive investigations into theory
- Address the question of when and why you should want to use power and exponential functions
- We should want a priori conditions
- Statistical goodness-of-fit tests provide a posteriori rationale; may be "hijacked" by "unusual data"; and still leave open the "why" question
- The math/economics/psychology literature on measurement scale theory provides a solid starting point

The End

Additional Discussions

Why We Studied "Nonlinear Methods" and the Solver in Particular

- Why study iterative, "only approximate," clearly imperfect methods for fitting model constants when we can always solve linear, log-transformed models?
- Not all interesting CERs with exponential and power form components will be "log transformable"
- Log transform approaches have their own properties - which are not in the scope of this report - not all of which may be desirable
- Iterative methods, including the Solver, have a user community convinced about their utility
- The project goal is to document methods' characteristics and not to make the case for one method or another as being the best

A Subtlety

- In "ordinary" regression analyses we:
- assume a single value for a and for b drive the $y s$
- disturbances in the ys we observe prevent us from identifying a and b exactly; we can only estimate a and bonly with uncertainty
- we term the data "noisy but homogeneous"
- Here, the regression data are perfect but heterogeneous:
- each line has varying as and bs
- we exactly calculate y on each line from the given a, b, and x values
- we search for a single value for a and for b that together, "best represent" the differing a, b pairs in the data set
- the errors are due, in principle, to the inability of any one a, b pair to represent the differing a, b pairs in the data
- when the data set comprises different types of articles we consider the data set heterogeneous

