Recognizing EVM Gaming

2008 SCEA/ISPA Annual
Conference & Training Workshop
Pacific Palms Conference Resort - Industry Hills, CA
June 24-27, 2008

Dorothy Tiffany, MSPM, CPA, PMP

Dorothy.J.Tiffany@nasa.gov

301-286-5917

Walt Majerowicz, MBA, PMP

Walt.Majerowicz@nasa.gov

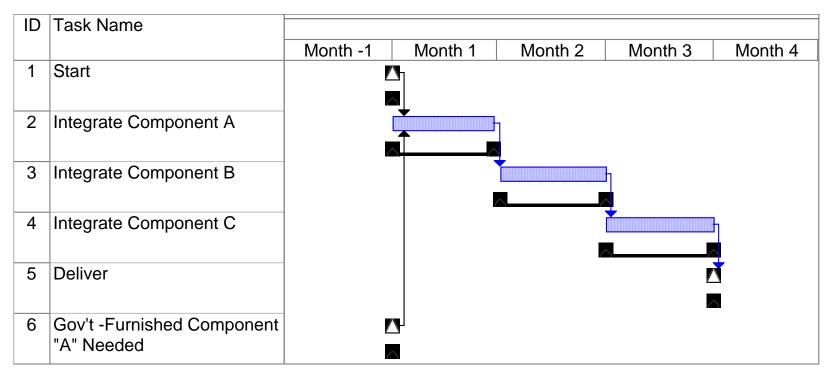
301-286-5622

What is Gaming?

- "Gaming the system" means using the rules, policies and procedures of a system against itself for purposes outside what these rules were intended for
- Most of the time, a set of rules will be put in place towards a simple goal
- In EVM, this goal is to provide the project stakeholders visibility into the performance of the project using a set of rules called principles and guidelines
- Unfortunately, people who study the rules closely can then use this rule set to play the "game" their own, unexpected way
- With EVM, gaming the system results in erroneous performance status and faulty forecasts

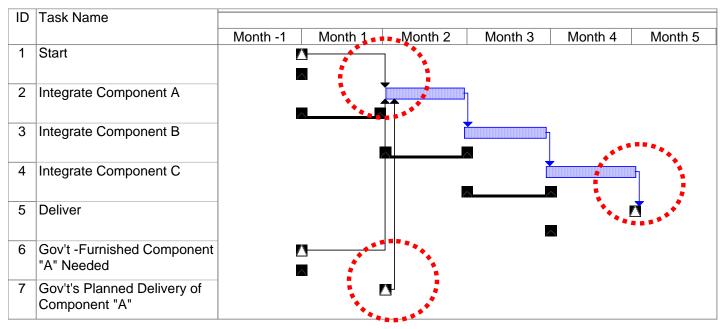
Games Projects Play

- Some organizations cannot accept bad news
 - Project managers, by nature, are optimistic and don't want to believe data that reveals pessimistic forecasts
- Some organizations punish their managers when things aren't going well, causing the managers to put off reporting bad news as long as possible
 - Some project managers do not want the visibility EVM provides, especially when things are not going well
- Some project managers intentionally delay "bad news" to give themselves a chance to improve their status


...And some people game the system

Gaming, Abuse & Data Manipulation Include:

- Misrepresenting status to senior management or the customer
- Manipulating performance indices to maximize award fee
- Misuse of calendars, lags and directed constraints
- Inappropriate use of Earned Value techniques
- Activity duration padding, compression
- Improper use of Management Reserve
- Preferential sequencing, logic abuse
- Frequent rebaselining, no baseline
- Multiple sets of schedule books
- Frontloading, rubber baselining
- Zero budget work packages
- Hiding significant variances
- Rate manipulation
- Hiding slack/float


Let's take a look at a few examples

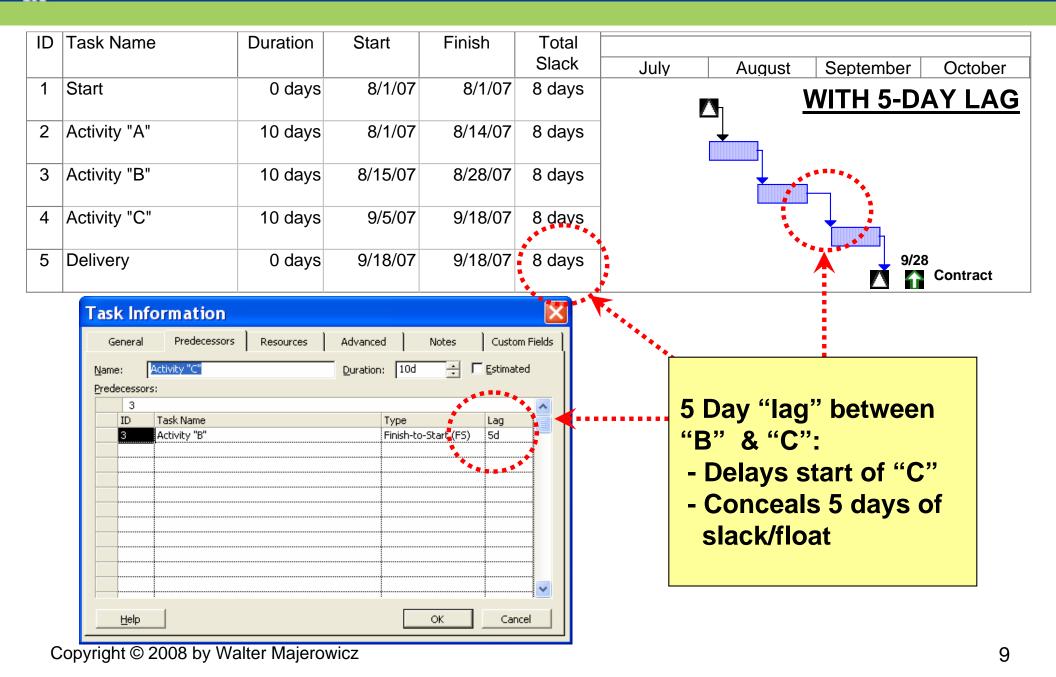
Preferential Sequencing

- Contractor's Planning Approach
 - Contractor can really integrate components A, B and C in any order
 - Schedule developed and baselined with government-furnished
 Component A needed first in the integration flow

Preferential Sequencing

- Contractor schedule threatened by "late" GFE
 - Government cannot deliver component A until the start of month 2
 - Contractor claims delay will impact it's schedule
- What should the government do?

Dealing with Preferential Sequencing


- Include "on-dock" delivery dates for GFE in the Prime's contract
- Consider "earlier-than-needed" delivery dates in contract with the agreement that they provide some flexibility for the contractor in swapping components during integration & test
- Pre-negotiate contract options for handling cases of late GFE
- Consider schedule slack/float as a shared resource
- Verify and validate contractor schedule no later than Integrated Baseline Review (IBR) or prior to new baselines

Hiding Slack/Float

ID	Task Name	Duration	Start	Finish	Total	
					Slack	July August September October
1	Start	0 days	8/1/07	8/1/07	13 days	
						WITHOUT LAG
2	Activity "A"	10 days	8/1/07	8/14/07	13 days	
-	7.5		<i>Si 1, S1</i>	3 , 1 1, 3 1		
3	Activity "B"	10 days	8/15/07	8/28/07	13 days	44444
	, tearrity 2	. o dayo	0, 10, 01	3, 23, 31	. o dayo	
4	Activity "C"	10 days	8/29/07	9/11/07	13 days	<u> </u>
	7.5		5, 25, 51	3, 11, 31		
5	Delivery	0 days	9/11/07	9/11/07	13 days	9/28
	25		3, 1 1, 31	3, 1 1, 31	. o dayo	Contract
						-
	Task Information				×	
	General Predecessors	Resources	Advanced	Notes Cus	stom Fields	:
	Name: Activity "C"		Duration: 10d	— <u></u>	nated	•
	Predecessors:				.	
	3					
	ID Task Name		Туре	Lag		- No "lag" time
	3 Activity "B"		Finish-t	o-Start (R6) Od		
						Between "B" & "C"
						- "C" starts as soon as
						"B" finishes
	<u>H</u> elp			OK C	ancel	

Copyright © 2008 by Walter Majerowicz

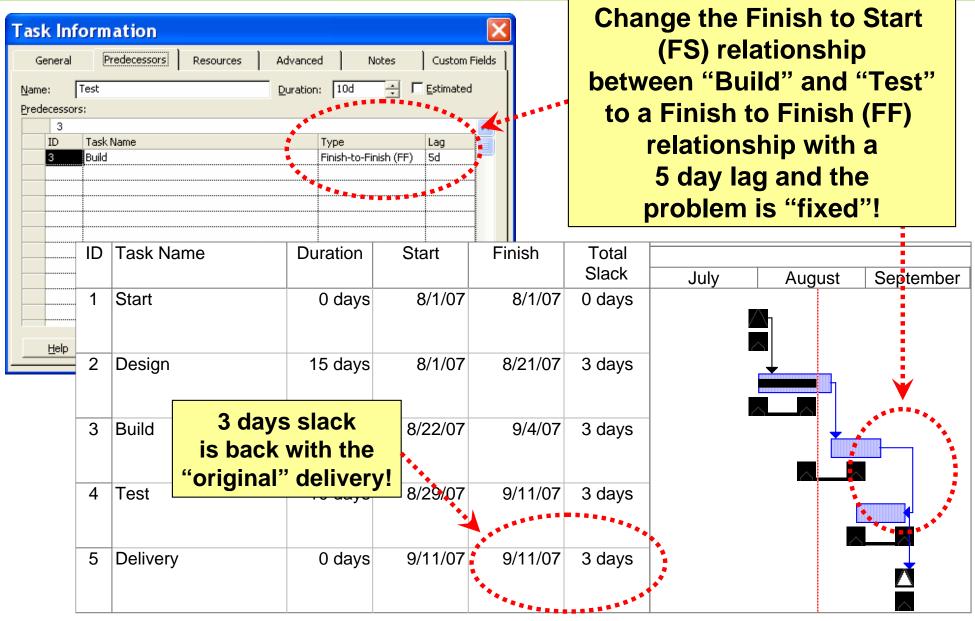
Hiding Slack/Float

Dealing With Hidden Slack/Float

- Eliminate reasons for concealing slack/float by having
 - Realistic activity durations
 - Adequate schedule reserves
 - Documented schedule assumptions and programmatic constraints
 - Clear rationale for pure schedule constraints
- Consider schedule slack/float as a shared resource
- Recognize some lags may be legitimate (e.g. cure time)
- Training in schedule management

Abusing Project Logic

ID	Task Name	Duration	Start	Finish	Total Slack	July August September
1	Start	0 days	8/1/07	8/1/07	0 days	
2	Design	10 days	8/1/07	8/14/07	3 days	
3	Build	10 days	8/15/07	8/28/07	3 days	
4	Test	10 days	8/29/07	9/11/07	3 days	Finish No Later Than
5	Delivery	0 days	9/11/07	9/11/07	3 days	9/14


- It's August 10th and the project is on track to beat the 9/14 target delivery date by three days!
- But one week later, engineering reports that it will be late finishing the design effort which results in ...

Abusing Project Logic

ID	Task Name	Duration	Start	Finish	Total Slack	July	August September
1	Start	0 days	8/1/07	8/1/07	0 days	July	Late
2	Design	15 days	8/1/07	8/21/07	-2 days		
3	Build	10 days	8/22/07	9/4/07	-2 days		
4	Test	10 days	9/5/07	9/18/07	-2 days	← …	Late Delivery
5	Delivery	0 days	9/14/07	9/14/07	-2 days		

- A four work day impact to the 9/14 customer delivery commitment (Finished Not Later Than (FNLT) 9/14)
- What should the project do?

Abusing Project Logic

Dealing with Project Logic Abuse

- Schedule "health check" and "detective" tools can screen for activities without predecessors and successors
- Custom reports/filters can identify suspicious activity relationships and questionable leads/lags
- Logic traces of network diagrams are best for understanding context of specific relationships and lags
- Include a requirement for explanation of logic changes in contractor's monthly schedule status reports
- Receivables/Deliverables (Rec/Del) Lists help validate logic
- Develop the integration & test schedule early to a level of detail sufficient for identifying hardware and software delivery need dates
- Include "on-dock" delivery dates for GFE in contracts
- Rules-of-Thumb:
 - Use Finish-to-Start relationships whenever feasible
 - Don't use lags if an activity better defines the schedule condition
 - Finish-to-Start relationships with negative lags are a "red flags"

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Inappropriate Use of EVM Techniques: Overestimating Task Percentage Completions

Before Manipulation

Cum	Period 1	Period 2	Period 3	Period 4
PV	100	225	368	500
EV	95	212	296	438
AC	105	239	335	505
CPI	0.905	0.887	0.884	0.867
SPI	0.950	0.942	0.804	0.876

After Manipulation

Cum	Period 1	Period 2	Period 3	Period 4
PV	100	225	368	500
EV	95	212	296	480
AC	105	239	335	505
CPI	0.905	0.887	0.884	0.950
SPI	0.950	0.942	0.804	0.960

By increasing EV by a small amount, performance indices improve a lot

Inappropriate Use of EVM Techniques: Offsetting Performance Problems with LOE

	PV	EV	AC	BAC	IEAC*
Spacecraft	55,900	25,000	33,251	125,000	166,255
Instrument	170,070	67,500	175,500	225,000	585,000
Mission Mgmt	35,000	35,000	20,250	60,000	34,714
S&MA	40,000	40,000	14,750	95,000	35,031
Total	300,970	167,500	243,751	505,000	821,001

In this example, Mission Management and Safety and Mission Assurance (S&MA) are LOE activities. Note that underrunning LOE tasks (EV-AC) causes the projected EAC to be lower than the BAC. LOE can effectively mask overruns in other activities.

* - BAC/CPI

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Dealing with Inappropriate Use of EVM Techniques

- Milestones should be discrete, objective, and verifiable rather than simply marking the passage of time
- Percent Compete should be based on some objective criteria when possible
 - Consider "Percent Complete with Milestone Gates" for more objectivity
 - Control Account Plan (CAP) subjective percent complete estimates at 80% until task is 100% finished
- LOE should not exceed 10% of PMB and BAC
 - Consider "quarantining" LOE from baseline
- 50/50 Method should only apply to short duration work packages (one or two accounting periods)
- Carefully examine material work package phasing for billing and booking lag problems
- Include examination of EVM techniques in IBR

Declining Rates

Apr 02 Feb 02 **Mar 02** Balance of Estimate at Actual Plan Plan Contract Completion \$56,394,000 **Labor dollars** \$831,000 \$1,029,000 \$1,177,000 \$41,889,000 Labor hours 12,645 27,908 29,394 1,006,295 1,266,475 \$65.72 \$36.87 \$40.04 \$41.63 \$44.53 **Hourly Labor Rate**

While some fluctuation in labor rates are expected, it's unlikely that the rate will suddenly drop by a third for the entire remaining period of the contract.

Overhead (indirect) Rate Manipulation

- Erroneous use of different rates for indirect cost PV and EV
- This causes EV to build at a faster rate than PV, causing favorable cost and schedule variances that will offset negative variances at the total level

Overhead (Indirect) Rate Manipulation

			OH Dollars with	OH Dollars with
	Labor		Correct OH	Manipulated OH
	Dollars	OH Rate	Rates	Rates
PV	1,000	1.25	1,250	1,250
EV	1,000		1,250	1,300
AC	1,000	1.30	1,300	1,300

	CV	SV
Correct		
Variances	-50	0
Manipulated		
Variances	0	50

So instead of correctly reporting an unfavorable cost variance of -50, this rate manipulation results in a favorable schedule variance of 50, with no cost variance.

Dealing with Rate Manipulation

- Perform simple analysis of rates on a regular basis
- Some fluctuation in rates from one period to another is expected due to labor mix and inflation. Big differences need to be explained by the contractor
- In all elements that involve rates, the rate used for PV should always be the same rate used for EV. Only the AC rates can reflect differences.

Gaming EV to Improve Performance Indices and Training Workshop - www.iceaaonline.com Performance Indices

ABC Total Contract (before EV manipulation)

	Oct	Nov	Dec	Jan	Feb	Mar	Cum thru Jan
PV	3,020	3,780	5,500	8,100	6,900	3,100	20,400
EV	1,960	3,850 <	8,800	3,390			18,000
AC	1,980	4,115	9,600	7,505			23,200
CPI	0.990	0.936	0.917	0.452			0.776
SPI	0.649	1.019	1.600	0.419			0.882

Gaming EV to Improve Performance Indices and Increase Award Fee

	ABC Total Contract (after EV manipulation)							
	Oct	Nov	Dec	Jan	Feb	Mar	thru Jan	
PV	3,020	3,780	5,500	8,100	6,900	3,100	20,400	
EV	1,960	3,850	9,200	6,450)		21,460	
AC	1,980	4,115	9,600	7,505			23,200	
CPI	0.990	0.936	0.958	0.859			0.925	
SPI	0.649	1.019	1.673	0.796			1.052	

If the Performance Evaluation Plan awarded fee for having a CPI of 0.9 or higher, the subtle manipulations needed in EV within work packages would be difficult to detect.

Dealing with Award Fee and EVM

- Don't tie award fee to performance indices this incentive entices the contractor to get the best indices possible at the expense of meaningful EVM data.
- Do tie award fee to satisfactory and verifiable completion of milestones

So What if the EVMS is Gamed?

"If you have bad data you can't make good decisions"
- Unknown

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com How to Avoid or Detect Gaming, Abuse and Data Manipulation

- 1. Conduct Integrated Baseline Reviews with experts in the Project's technical, financial and scheduling areas
- 2. Use analysis tools (e.g. schedule health check/detective)
- 3. Get training in gaming/abuses
- 4. EVM training for project team in contractor EVM system
- 5. Remove enablers to gaming (e.g. weak schedule specifications, CPI-based award fee milestones)
- 6. Beware of perfect performance in real life, it never happens
- 7. Analyze the data regularly and watch for trends, patterns and outliers
- 8. Conduct surprise audits (e.g. timecards/name runs, schedule integration)

How to Avoid or Detect Gaming, Abuse and Data Manipulation Cont'd

- Talk to people who previously worked with organization/ contractor you are dealing with
- 10. Make sure that change order, proposal, revision and contract mod processing are done in a timely manner
- 11. Ensure that detailed change logs are used and understood (e.g. schedules, MR, UB)
- 12. Investigate reasons for LOE budget greater than 10% of PMB and monitor effect of changes
- 13. Measure what matters (e.g. proper EVM methods)
- 14. Consider modifying the reporting requirements
- 15. Specify a dollar amount **OR** percentage for the variance reporting thresholds

The Last Word

"You can only game the system until you run out of money."

Senior OMB official, 2006

