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Abstract 
Many techniques exist to determine parametric relationships within large datasets. While 
cost estimation relies heavily on identifying such relationships, a data-scarce environment, 
driven by factors such as vendor proprietary restrictions, security concerns, and the 
uncertainty of emergent technologies, is a common barrier in implementing these 
techniques. This topic will evaluate common methods to analyze minimalized datasets for 
developing defendable cost estimates and demonstrate the statistical impacts of their 
underlying assumptions. 
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Maximizing Analysis of Minimalized Datasets 
1. Introduction 
Leveraging historical data is crucial in developing impartial cost estimates. While many 
analytical methods exist to identify cost estimating relationships (CERs), most rely upon 
having a sufficiently large set of historical data. However, due to a combination of factors 
such as emergent technologies, vendor proprietary restrictions, and security concerns, 
gathering enough data points to execute more robust analytical methods is often not 
possible. Therefore, different techniques must be used to leverage every applicable point in 
a minimal dataset and develop a defendable cost position.  

This paper will review existing guidance on selecting a point estimate in a data-scarce 
environment. The benefits and drawbacks of these different rules of thumb will be 
demonstrated through a series of Monte Carlo-based simulations. 

2. Selecting a Point Estimate and Bounding Uncertainty 
A data-scarce environment is not a new phenomenon in cost estimating, and rule-of-thumb 
guidance exists on selecting a data-informed point estimate from a limited set of historical 
data and applying risk and uncertainty to account for the unknown. However, these rules of 
thumb rarely delve into the quantitative implications of choosing one method over another. 
To develop an informed risk-adjusted cost position, understanding the impact and 
limitations of the choice of model is crucial. 

A review of existing industry guidebooks, papers, and presentations yielded several results 
focusing on the development of a point estimate with a limited data set. The literature 
review was conducted using the search terms “small data” and “limited data” within the 
ICEAA archives resulting in 36 unique results. Of those 36 results 5 were found to provide 
specific recommendations for determining a point estimate and/or accounting for risk and 
uncertainty. In addition to research presented at ICEAA, a review of cost estimating 
handbooks was also completed.  

The GAO Cost Estimating and Assessment Guide identifies three primary and three 
secondary methodologies for developing a point estimate. Of these, they recommend 
leveraging analogy and parametric-based methodologies when generating the point 
estimate with limited data, with subject matter expert input as a methodology of last resort. 
While various parametric techniques can be applied to small datasets (n<30), most of the 
reviewed documents recommended a focused attention to improving the quality of the data 
rather than provide recommendations for methods that can provide accurate results in a 
data scarce environment. A singular 2021 ICEAA paper “Assessing Regression Methods via 
Monte Carlo Simulations” was found to evaluate the impact of using various regression 
techniques on small vs large datasets and three additional papers/presentations 
highlighted specific techniques for developing the point estimate. Of note is the 2023 follow 
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on study to the 2014 ICEAA best paper award winning study recommending the use of 
Bayesian regression. 

The most direct recommendations on how to estimate using small data were provided by 
the Joint Agency Cost Estimating Relationship (CER) Development Handbook. Specifically, 
the handbook recommended the following guidelines for choosing analytical methods: 

𝑛𝑛 = 1 -> Scaled Analogy 

1 < 𝑛𝑛 < 5 -> Scaled Analogy or Average 

𝑛𝑛 − 𝑘𝑘 ≥ 3 -> Parametric 

Where n = number of data points and k = number of independent variables  

3. Simulating an Obscured Viewpoint - Methodology 
When applying the above guidance to a minimal dataset, one consideration that may come 
up is how and how much the point estimate is affected by the historical data points the 
analyst has visibility into. However, the limited nature of a minimal data set makes 
observing outliers difficult if not impossible, leaving all analytical methods susceptible to a 
false confidence in the prior distribution. In the same vein, evaluating how sensitive the 
methods outlined above are to the choice of inputs would not be possible with a dataset 
where limited data exists. Therefore, a simulation-based approach was used to determine 
the sensitivity of the above methods to available inputs. 

To evaluate the effects of a data-scarce environment on the results of a data-driven point 
estimate, the first step was to determine an expected result from a simulation. To do this, 
an existing simple linear CER and the applicable range of values for the explanatory 
variable was identified, such that, 

{𝑓𝑓(𝑥𝑥) = 𝑎𝑎 ∗ 𝑥𝑥 + 𝑏𝑏 +  𝜀𝜀|𝑥𝑥 ∈ (𝑙𝑙,ℎ)} 

From there, we defined the input and expected response of our simulation as, 

�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟� = �𝑙𝑙+ℎ
2 ,𝑓𝑓 �𝑙𝑙+ℎ2 �|𝜀𝜀=0

� 

The next step was to randomly generate a set of 45 tuples that follow the behavior of the 
existing CER. To do this, we used the open-source Python packages NumPy and SciPy. First 
a normally distributed sample of values 𝑥𝑥 ∈ (𝑙𝑙,ℎ) were generated. Next, the CER was 
applied to these values without noise. Lastly, noise was added to the response to simulate 
the natural variation of real-world data, consisting of random draws from the set: 

𝑁𝑁 =  �𝑛𝑛 = 𝑎𝑎 ∗ (.9 + 𝑥𝑥)�𝑎𝑎 = 𝑓𝑓(𝑙𝑙) + 𝑓𝑓(ℎ)
2 , 𝑥𝑥 ∈ 𝑈𝑈(0, .2)� 
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This results in a set of 45 data points that follow the trend of the reference CER, have an 
input and response that generally follow the normal distribution, and have responses with 
homoscedastic noise, denoted as 

𝑆𝑆𝑓𝑓 = �(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)�𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖)|𝜀𝜀=0 + 𝑛𝑛,𝑛𝑛 ∈ 𝑁𝑁� 

The next step was to simulate an analyst being able to see only four data points in 𝑆𝑆𝑓𝑓, and 
then applying each of the three methods outlined in the CER handbook for minimal 
datasets: an analogy, a flat average, and a full parametric regression. For each (𝑥𝑥,𝑦𝑦)𝑓𝑓 =
 𝑠𝑠𝑓𝑓 ⊂ 𝑆𝑆𝑓𝑓, the point estimate for each methodology were defined as follows: 

𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑦𝑦𝑓𝑓[argmin{|𝑥𝑥𝑓𝑓− 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟|}] 

𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{𝑦𝑦𝑓𝑓} 

𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑎𝑎𝑠𝑠𝑓𝑓 ∗ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑏𝑏𝑠𝑠𝑓𝑓  

Where 𝑎𝑎𝑠𝑠𝑓𝑓  and 𝑏𝑏𝑠𝑠𝑓𝑓  are the coefficient and intercept, respectively, of ordinary least squares 
regression for the set 𝑠𝑠𝑓𝑓.  

This simulation is repeated for 10,000 𝑠𝑠𝑓𝑓, and the results (𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) 
are logged for each iteration. For each method, the range of results are assessed both 
independently, relative to 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟, and relative to each other to appraise their sensitivity to the 
explanatory variable. 

Additionally, the tuples (𝑎𝑎𝑠𝑠𝑓𝑓 , 𝑏𝑏𝑠𝑠𝑓𝑓) are logged to assess the limitations of a full parametric 
regression across the entire range of applicable values for the explanatory variable. 

While in a practical application, qualitative attributes of the program being estimated 
would be factored in to the choice of data points, this simulation operates under the 
assumption that all tuples of 𝑆𝑆𝑓𝑓 represent programs sufficiently analogous to the one being 
estimated. 

This methodology is outlined in Figure 1. 
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Figure 1: Diagram of Simulation 

4. Results 

4.1. Linear Model 

In regression analysis, the choice of model is going to have a significant impact on the 
results. While there are many models to choose from, the first simulation was evaluated 
using a linear model. This was partly to develop a baseline for how the three methods 
compare independent of transformations applied to the data before comparison. 
Additionally, when working with minimal datasets, it is unlikely that inspecting the 
historical data points would provide sufficient insight into the shape of a CER. 

The first simulation was conducted on a CER relating annual PMP support hours to the 
level of acquisition support required for small USAF software development programs 
(Aguirre et al, The Progression of Regressions). The CER is defined as follows: 

{𝑓𝑓(𝑥𝑥) = .8944 ∗ 𝑥𝑥 − 3368 ℎ𝑟𝑟𝑟𝑟 +  𝜀𝜀|𝑥𝑥 ∈ (5,000 ℎ𝑟𝑟𝑟𝑟, 23,000 ℎ𝑟𝑟𝑟𝑟)} 

Based on the methodology defined in section 3, this CER yields a reference point of 

�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟� = (14,000 𝑃𝑃𝑃𝑃𝑃𝑃 ℎ𝑟𝑟𝑟𝑟, 9,153.6 𝐴𝐴𝐴𝐴𝐴𝐴 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 

45 normally distributed values between 5,000 and 23,000 PMP hours were generated and 
provided as inputs to the CER. Random values of noise between ±1,609 hours were added 
to the response to generate the set 𝑆𝑆𝑓𝑓, which is illustrated in Figure 2 below. 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



 

8 
 

 
Figure 2: Randomly Generated Dataset for Linear Regression 

10,000 simulations of an obscured viewpoint were then applied to this set, which each 
iteration resulting in a point estimate for the analogy, flat average, and full parametric 
estimating methods. By plotting the histogram and cumulative distribution function (CDF), 
some initial observations can be made. 

First looking at the results for the analogy method, shown in Figure 3, we can see that the 
distribution of results is discrete and not continuous; this makes sense as the choice of 
point estimate is limited by the priors. This is not necessarily a problem; if sufficient risk 
and uncertainty are applied, the estimate can still adequately capture a developing 
program’s potential to deviate from the analogy.  

 
Figure 3: Simulation of an Analogy-Based Point Estimate for a Linear Model 

The second observation is that most of the results are clustered at ~8,000 acquisition 
support hours, which deviates a notable amount from 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟. While this is an incidental 
finding due to the noise in 𝑆𝑆𝑓𝑓 decreasing the responses where the PMP hours are close to 
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𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟, it demonstrates an over-confidence in the relationship between the input and the 
response for the chosen analogy. 

Moving on to the results of the flat average methodology, seen in Figure 4, the distribution 
of possible results resembles a continuous normal distribution with a wide spread. The 
peak of the curve appears to fall ~9,000 hours, which is in line with 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟. However, the 
spread of data indicates it would be likely to over- or under-estimate the level of 
acquisition support required.  

 
Figure 4: Simulation of an Average-Based Point Estimate for a Linear Model 

Observe that the flat average considering every point of the visible subset to be equally 
likely and is independent of the PMP hours of the program being estimated. Practically, this 
can be beneficial – if the program is early enough in the acquisition life cycle that the PMP 
hours cannot be reliably estimated, a point estimate for the acquisition support hours can 
still be developed. 

For this same reason, if response has an unusual residual from the trend of the greater 
dataset, the effect of that noise will be less pronounced than in an analogy, as it will be 
offset by other points in the sample.  

However, a flat average is sensitive to outliers in inputs. If the visible subset contains any 
values of the explanatory variable that are abnormally small or large due to factors that 
cannot be observed through market research, a flat average will consider them more 
applicable to other programs than they are. In this case, the point estimate could reflect the 
program being just as likely to require 14,000 PMP hours as 23,000 (and, by extension, 
9,000 acquisition support hours as 17,000), which may not be realistic. 

Lastly, the results for a full parametric regression are shown in Figure 5. The distribution of 
results resembles a continuous normal distribution with a narrow spread. Like the flat 
average, the results peak close to 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟; however, the results rarely fall out of the 7,000-to-
11,000-hour range, which differs significantly from the flat average methodology. This 
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indicates a high likelihood of the predicted value aligning with the trend of the larger 
dataset. 

 
Figure 5: Simulation of a Regression-Based Point Estimate for a Linear Model 

However, there are still some results that fall at extreme ends of the spectrum. While this 
can be accounted for in the flat average by an independence from the PMP hours, the 
parametric accounts for 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 yet still exhibits these extremes. Since the explanatory 
variable is being controlled for and neither the explanatory variable nor response were 
transformed for the regressions, it can be concluded that the variation in the results is fully 
attributable to the noise in the response. 

While these extreme outliers are not always readily identifiable with a minimal dataset, 
there are some instances where domain knowledge can be used to evaluate the coefficient 
and intercept of the regression and rule out inaccuracies. Figure 6 plots results of the 
regression analysis performed in the simulation across the entire range of valid PMP hours.  

 
Figure 6: Sample Regression results, demonstrating outliers with unjustifiable coefficients 
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Consider the result of the regression yielding the equation 𝑦𝑦 =  −0.636 ∗ 𝑥𝑥 + 21980. While 
a result 13,076 acquisition support hours sounds high for a program with 14,000 PMP 
hours, the negative coefficient indicates the point estimate is not only high but unfounded, 
as the acquisition support hours would decrease should the program become larger in 
scope. Similarly, the result 𝑦𝑦 = 3.318 ∗ 𝑥𝑥 − 39734 would indicate that every hour of PMP 
support requires over 3 hours of acquisition support, which is not defendable. Similarly 
extreme results would indicate that an analogy or flat average would be better to use. 

Cross-checking with domain knowledge may not always be possible when the explanatory 
variable and response have a less intuitive relationship. However, if this is the case, it 
would not be advisable to construct a parametric relationship between the two variables 
based on a minimal dataset in the first place. 

4.2. Power Model 

While a linear regression model can provide insight into simple relationships between two 
variables, they are rarely reflective of the complexities of real-world relationships. While 
this can usually be accounted for by adding more explanatory variables to a model or 
increasing the degrees of freedom with polynomial regression, this may not be possible 
when data is not available. One common model used in regression analysis that requires 
neither more explanatory variables nor more degrees of freedom but does allow for 
modeling more complex relationships is a power model. 

To adapt our experiment to account for a power model, we let: 

{ln (𝑓𝑓(x)) = 𝑎𝑎 ∗ ln (𝑥𝑥) + 𝑏𝑏 +  𝜀𝜀|𝑥𝑥 ∈ (𝑙𝑙, ℎ)}, 

�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟� = �𝑒𝑒
ln(𝑙𝑙)+ln (ℎ)

2 ,𝑓𝑓 �𝑒𝑒
ln(𝑙𝑙)+ln (ℎ)

2 �
|𝜀𝜀=0

� 

And, 

𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑏𝑏𝑠𝑠𝑓𝑓 ∗ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
𝑎𝑎𝑠𝑠𝑓𝑓  

Where ln (𝑎𝑎𝑠𝑠𝑓𝑓) and 𝑏𝑏𝑠𝑠𝑓𝑓  are the coefficient and intercept, respectively, of ordinary least 
squares regression for the set ln (𝑠𝑠𝑓𝑓).  

The next simulation was conducted on a CER relating simple function points of an Agile 
software development effort to the total development hours required. The CER is defined 
as follows: 

�ln�𝑓𝑓(𝑥𝑥)� = .7708 ∗ ln (𝑥𝑥) − ln (421.68 ℎ𝑟𝑟𝑟𝑟) +  𝜀𝜀�𝑥𝑥 ∈ (100 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 10,000 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� 

Based on the methodology defined in section 3, this CER yields a reference point of 

�𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟� = (1,000 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 86,573 𝐷𝐷𝐷𝐷𝐷𝐷.𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 
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45 log-normally distributed values between 100 and 10,000 were generated and provided 
as inputs to the CER. Random values of noise between ±.355 ln (Dev. Hours) were added to 
the log of the response, then transformed to generate the set 𝑆𝑆𝑓𝑓. 

 
Figure 7: Randomly Generated Dataset for Power Regression 

10,000 simulations of an obscured viewpoint were then applied to this set, which each 
iteration resulting in a point estimate for the analogy, flat average, and full parametric 
estimating methods. By plotting the histogram and CDF, some observations can be made. 

Looking at Figure 8, we can see that, once again, that most of the results are clustered near 
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟. However, in the cases where only high-complexity outliers can be seen, this method 
massively overestimates the results, even more than the linear model. However, since this 
analogy is based on the simple function points of an Agile software development effort, it 
would be simple to disregard these results in practice based on the extreme difference in 
the explanatory variable. 

 
Figure 8: Simulation of an Analogy-Based Point Estimate for a Power Model 

Looking at the result of the flat average method in Figure 9, we can once again see that the 
results of the simulation are continuous with a wide spread. However, unlike the results of 
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the linear model, the peak of the curve is noticeably greater than 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟. With a mean and 
median of ~190,000 hours, most of the results would not yield a reasonable result.  

 
Figure 9: Simulation of a Flat Average-Based Point Estimate for a Power Model 

This is because, as mentioned above, the flat average method is sensitive to outliers in the 
response. As a power model where the exponent is not equal to 1 or 0 is inherently skewed, 
the effect of these outliers is going to be more pronounced. While weighting techniques can 
be used to lessen these effects, developing an informed weighting method with a minimal 
dataset is rarely possible. A solution is to narrow down the dataset even further to a single 
data point and use that as an analogy and utilize the other data points to inform a risk 
distribution. 

The result of the full parametric simulation is shown in Figure 10. Like the results with the 
linear model, the results have peak close to 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟 and have a low spread. However, eight of 
the results, not plotted below, were greater than 500,000 hours. Though in practice these 
points would be easy to discard, this highlights the increased sensitivity to noise compared 
to other methods, which is exaggerated with a more complex model. 

 
Figure 10: Results of a Full Parametric-Based Point Estimate for a Power Model 
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Despite the outliers, it appears these results are accurate. While this may be true for a low 
simple function point count, Figure 11 shows that this does not hold for larger values. Even 
when contextual and statistical outliers are removed, the range of possible results varies 
dramatically when the simple function point count is greater than 2,500. 

 
Figure 11: Sample results of Regression Analysis for a Power Model 

Note that the CER handbook recommends using weighted least squares over ordinary least 
squares for a power model. However, it is assumed for the purposes of this experiment that 
there is not sufficient knowledge of the prior distribution to inform a weighted least 
squares approach. 

5. Conclusions 
Many techniques exist to determine parametric relationships between variables in large 
datasets. However, when developing cost estimates, data scarcity can impede the 
effectiveness of these techniques. A review of existing guidance highlighted the limited 
guidance on developing data-informed point estimates from a minimal dataset. Further, the 
guidance that does exist rarely demonstrated the benefits and drawbacks of using one 
method over another. However, three main techniques were identified in the literature – 
analogies, flat averages, and parametric methods. 

By leveraging Python and existing CERs, we were able to simulate how each of these 
methods fare when only a subset of the prior distribution is observed. Through this testing, 
we concluded that each method had its benefits and limitations when applied to a minimal 
dataset. Estimating by analogy makes for a defendable estimate when little data is available 
but implies confidence in the relationship between the explanatory variable and response, 
which may be false. Estimating with a flat average can be done without quantitative inputs 
of the effort being estimated but is sensitive to outliers in the response of the sample. 
Finally, estimating with parametric methods has the potential to return accurate results, 
but is sensitive to noise in the observed sample and can create false confidence. The 
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drawbacks of all these methods are only emphasized as relationships between variables 
become more complex. 

Overall, there is no way to advise which of these methods will work best for assessing a 
minimal dataset 100% of the time. However, being informed of the advantages and 
limitations of these methods allows cost analysts to not only develop defendable estimates, 
but also speak to the limitations created by data scarcity. By being able to navigate these 
known unknowns, analysts can make the most of ever observation in a data-scarce 
environment and maximize the analysis of minimal datasets. 
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