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Understanding Prediction Intervals

• What are they?
– A range of values likely to contain the true value of a new observation, with a certain 

level of confidence; provide an estimate of uncertainty surrounding the prediction
– Based on a fitted model and account for variation in:

• Response variable;  Standard Estimating Error (SEE, 𝑀𝑀𝑀𝑀𝑀𝑀 or 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ �𝑦𝑦 ) is usually an unbiased 
estimator of this variation

• Estimating regression parameters: usually a function of the distance between independent 
variables and their means, scaled by their covariance

• Classical formula for calculating Prediction Intervals for linear regression:

�𝑦𝑦 ± 𝑡𝑡𝛼𝛼
2,𝑛𝑛−𝑝𝑝−1 × 𝑀𝑀𝑀𝑀𝑀𝑀 1 +

1
𝑛𝑛

+
(𝑥𝑥 − 𝑥̅𝑥)2

∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2

where 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛−𝑝𝑝−1

∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖)2

• Assumptions:
– Linearity, Independent errors, Normal errors, Equal error variance
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Prediction Intervals Example

• How are they different from Confidence Intervals?
– Prediction Interval - range for a predicted value for a given input: � 𝒚𝒚 = 𝒙𝒙𝟎𝟎𝜷𝜷 + 𝜺𝜺 
– Confidence Interval - range for the expected predicted value (𝐸𝐸 𝜀𝜀 = 0):  �𝒚𝒚 = 𝒙𝒙𝟎𝟎𝜷𝜷 
– Prediction Intervals have a wider range since they account for error in the prediction 

3

CI : �𝑦𝑦 ± 𝑡𝑡𝛼𝛼
2,𝑛𝑛−𝑝𝑝−1  × 𝑀𝑀𝑀𝑀𝑀𝑀 1

𝑛𝑛
+ (𝑥𝑥 − 𝑥̅𝑥)2

∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2

Vs.

PI : �𝑦𝑦 ± 𝑡𝑡𝛼𝛼
2,𝑛𝑛−𝑝𝑝−1  × 𝑀𝑀𝑀𝑀𝑀𝑀 1 + 1

𝑛𝑛
+ (𝑥𝑥 − 𝑥̅𝑥)2

∑(𝑥𝑥𝑖𝑖−𝑥̅𝑥)2

Extra Error Term!
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Conformal Prediction

• Conformal Prediction is a technique that generates prediction intervals with 
rigorous statistical coverage guarantees and without distributional assumptions
– Applies to any machine learning algorithm or “black-box” model
– Applies to both regression and classification problems
– Only requires the exchangeability of data (a weaker assumption than independence)

• Classical:    Linearity, Independent errors, Normal errors, Equal error variance (L I N E)

• Conformal:  Linearity, Independent errors, Normal errors, Equal error variance (-- I --  --)

• For regression problems, conformal prediction only requires access to a trained 
model (i.e., CER) and unseen calibration data that was not used for training:
1. Use the previously trained model to predict the unseen calibration data and calculate 

residuals for the calibration data
2. Find the percentile (�𝑞𝑞1−𝛼𝛼) of the calibration residuals corresponding to your level of 

significance
3. Apply that calibration residual percentile to generate intervals around new predictions 

( �𝑦𝑦 ± �𝑞𝑞1−𝛼𝛼)

• Remarkably, this simple process yields statistical coverage guarantees given the 
exchangeability of the underlying data
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𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑃𝑃:  27.08, 43.95
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃: 27.27, 43.76

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶:  84%
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 83%

Conformal Intuition – How does this work?

• Suppose we have some training data (  ), some calibration data (  ), and a new 
data point we need to predict (   )
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Why use conformal prediction?

• Conformal prediction exploits calibration data to produce a realistic representation 
of how the model performs on new, unseen data (e.g., the new system you are 
about to estimate)
– Essentially, conformal prediction exploits the information we gain from applying the model 

to labeled data unseen at the time of training, to estimate the error we can expect when 
we apply the model to unlabeled data (i.e., where the response is unknown)

– Regardless of how well (or how poorly) your model fits the underlying training data, the 
calibration data still provides an unbiased assessment of how well the model can 
generalize against completely new data

• Suppose you were handed a “black-box” cost model or CER. How would you go 
about measuring if you were using the model correctly? How would you go about 
understanding the predictive uncertainty of using such a model?
– If you know what the outputs should be for a particular set of inputs, and the model 

approximates the outputs, you are likely using the model correctly
– If you know many of these (input, output) pairs, you can know how well the model will 

perform against the new program you are about to estimate
– Conformal prediction provides a statistically sound framework to answer these questions
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How else might we quantify uncertainty?

• A naïve approach would apply the conformal procedure previously described with
residuals on the training data acting as calibration data:
– 𝑃𝑃𝑃𝑃:𝑓𝑓 𝑋𝑋𝑖𝑖 ± the 1 − 𝛼𝛼 ∗ 100 percentile of 𝑌𝑌1 − 𝑓𝑓 𝑋𝑋1 , … , 𝑌𝑌𝑛𝑛 − 𝑓𝑓 𝑋𝑋𝑛𝑛
– Leads to be artificially narrow prediction intervals with overfitting (i.e., when the model

performs well on training data, but not on unseen data)
• Depends on you having access to the underlying training data

– This approach has NO statistical coverage guarantees
– This approach does NOT account for variability of residuals across the input space

• A slightly better approach would be to use Leave-One-Out Cross-Validation (LOOCV,
a.k.a. “jackknife”) residuals on the training data acting as calibration data:
– 𝑃𝑃𝑃𝑃:𝑓𝑓 𝑋𝑋𝑖𝑖 ± the 1 − 𝛼𝛼 ∗ 100 percentile of 𝑌𝑌1 − 𝑓𝑓−1 𝑋𝑋1 , … , 𝑌𝑌𝑛𝑛 − 𝑓𝑓−𝑛𝑛 𝑋𝑋𝑛𝑛
– Leads to slightly wider prediction intervals that are more robust than the naïve approach

• Depends on you having access to the underlying training data

– This approach still has NO statistical coverage guarantees
– This approach still does NOT account for variability of residuals across the input space
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Conformal Variants

• Full Conformal Prediction (Visual):
– 𝑃𝑃𝑃𝑃: 𝑦𝑦 ∶ 𝑦𝑦 −  𝑓𝑓𝑦𝑦 𝑥𝑥𝑛𝑛+1  ≤  𝑄𝑄1−𝛼𝛼 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛,𝑅𝑅𝑛𝑛+1

• Where 𝑓𝑓𝑦𝑦 is the model trained as if 𝑥𝑥𝑛𝑛+1,𝑦𝑦  were a new data point, 𝑅𝑅𝑖𝑖 = 𝑦𝑦𝑖𝑖 −  𝑓𝑓𝑦𝑦 𝑥𝑥𝑖𝑖  and        
𝑄𝑄1−𝛼𝛼 is the (1− 𝛼𝛼) ∗ 100 percentile of the residuals

– Does not require a calibration dataset, but requires re-fitting the model for every possible 
value of y whenever a new prediction needs to be made
• Since this is infeasible in practice, usually a finite grid of y-values are selected and evaluated, but 

this can be very computationally expensive even with small datasets

– This approach has strong statistical coverage guarantees (≥ 1 − 𝛼𝛼)

• Split Conformal Prediction (what we have previously discussed, Visual):
– Partition data into training (size 𝑚𝑚) and calibration (size 𝑛𝑛 − 𝑚𝑚) sets:

– 𝑃𝑃𝑃𝑃:  𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥𝑛𝑛+1 ± 𝑄𝑄1−𝛼𝛼 𝑅𝑅1𝐶𝐶 , … ,𝑅𝑅𝑛𝑛−𝑚𝑚𝐶𝐶

• Where 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the model trained on the 𝑚𝑚 training data points, 𝑅𝑅𝑖𝑖𝐶𝐶 = 𝑦𝑦𝑖𝑖 −  𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥𝑖𝑖  for all 𝑖𝑖 in 
the calibration set, and 𝑄𝑄1−𝛼𝛼 is defined as above

– Requires sacrificing data to the calibration set, but only needs to be fit once
• Calibration data can be hard to come by (nearly 1000 calibration data points are needed to achieve 

coverage between 88-92% at a 90% confidence level)

– This approach has strong statistical coverage guarantees (≥ 1 − 𝛼𝛼)
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Conformal Variants

• CV+ for K-fold Cross-Validation (CV+, Visual)
– Partition data into K non-overlapping subsets: 𝑆𝑆1, … , 𝑆𝑆𝑘𝑘

– 𝑃𝑃𝑃𝑃: 𝑄𝑄𝛼𝛼 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 𝑥𝑥𝑛𝑛+1 − 𝑅𝑅𝑖𝑖𝐶𝐶𝐶𝐶 ,𝑄𝑄1−𝛼𝛼 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 𝑥𝑥𝑛𝑛+1 + 𝑅𝑅𝑖𝑖𝐶𝐶𝐶𝐶

• Where 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) is the model trained with the 𝑘𝑘-th subset removed, 𝑘𝑘 𝑖𝑖  indicates the subset that 

includes the 𝑖𝑖-th data point, 𝑅𝑅𝑖𝑖𝐶𝐶𝑉𝑉 = 𝑦𝑦𝑖𝑖 − 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 𝑥𝑥𝑖𝑖  is the absolute value of the out-of-fold 
residual, and 𝑄𝑄𝛼𝛼 is defined as before

– Does not require a separate calibration data set and only requires fitting subsets of the 
data K times
• The out-of-fold residuals stand in proxy for the calibration dataset, since they are unseen at the 

time each model is trained during cross-validation

• If you are already performing cross-validation, then you are already training these models and 
calculating their out-of-fold residuals
– The only extra things you need to do is to save each 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) model and the association of out-of-fold residuals 

to subsets 𝑘𝑘 𝑖𝑖

• Note: CV+ where 𝐾𝐾 = 𝑛𝑛 is called the Jackknife+ (a form of Leave-One-Out cross-validation)

– Less strong than Full or Split conformal, but CV+ offers a statistical coverage guarantee
• CV+ sacrifices some of the statistical coverage guarantee but doesn’t require a separate 

calibration dataset, and doesn’t involve fitting the model infinitely many times
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Conformal Method Comparison

– K-Fold CV+ offers a balance between the computational cost of Full Conformal and the 
calibration data size requirements for Split Conformal

– If you’re already performing cross-validation to evaluate your models, CV+ is essentially 
computationally free (you just need to save the sub-models and residuals you are 
already calculating)

– All three methods are distribution free!

10

Variant Training 
Cost

Calibration 
Data

Coverage 
Guarantee

Empirical 
Coverage Notes

Full ∞ No ≥ 1 − 𝛼𝛼 ≈ 1 − 𝛼𝛼

Infeasible even with small datasets

Split 1 Yes ≥ 1 − 𝛼𝛼 ≈ 1 − 𝛼𝛼

Good when you have lots of calibration 
data or a computationally expensive 
model; stronger statistical guarantees 
than CV+

K-fold 
CV+ 𝐾𝐾 No ≥ 1 − 2𝛼𝛼 ⪆1 − 𝛼𝛼

Good when you have less data, or a 
very complex model; substantially 
computationally cheaper than Full 
conformal, but more costly than split 
conformal
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Locally Weighted CV+

• The conformal methods previously discussed tend to generate prediction 
intervals with constant width

• This behavior makes sense with additive errors, but not with the multiplicative 
errors we tend to see with cost data

• Luckily, conformal prediction works with any non-conformity measure (Visual)
– Up to this point, we used the absolute value of the calibration residuals as a non-

conformity measure
– Scaling the absolute value of the residuals by an estimate of the residual spread is still 

a valid non-conformity measure that preserves the statistical coverage guarantees

– Previously, we defined 𝑅𝑅𝑖𝑖𝐶𝐶𝑉𝑉 = 𝑦𝑦𝑖𝑖 − 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 𝑥𝑥𝑖𝑖 , now we consider 𝑅𝑅𝑖𝑖𝐿𝐿𝐿𝐿 =
𝑦𝑦𝑖𝑖−𝑓̂𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 𝑥𝑥𝑖𝑖
�𝜌𝜌−𝑆𝑆𝑘𝑘 𝑖𝑖 (𝑥𝑥𝑖𝑖)

• Where �𝜌𝜌−𝑆𝑆𝑘𝑘 𝑖𝑖 (𝑥𝑥𝑖𝑖) is the estimate of the conditional mean absolute deviation of the residuals 
from 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 

– This involves fitting two models at each step of cross-validation: one model to predict the response as usual, 
and one model to predict the absolute value of the in-bag residuals

• 𝑃𝑃𝑃𝑃: 𝑄𝑄𝛼𝛼 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 𝑥𝑥𝑛𝑛+1 − 𝑅𝑅𝑖𝑖𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆𝑘𝑘 𝑖𝑖 (𝑥𝑥𝑖𝑖) ,𝑄𝑄1−𝛼𝛼 𝑓𝑓−𝑆𝑆𝑘𝑘(𝑖𝑖) 𝑥𝑥𝑛𝑛+1 + 𝑅𝑅𝑖𝑖𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆𝑘𝑘 𝑖𝑖 (𝑥𝑥𝑖𝑖)
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Applications to Regression

12

• Create datasets to train/calibrate a ML model using CV+ method
• Fit a RF model on training data and plot predictions of test data
• Use CV+ method to determine 90% Prediction Interval bounds
• Explore other CV+ variants

– Locally Weighted
– Generalized Additive Model (GAM) using splines
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• In a classification setting, conformal prediction produces prediction sets, that are 
guaranteed to contain the true label with some measure of statistical certainty 
(where larger prediction sets indicate more uncertainty)

• For classification problems, conformal prediction only requires access to a trained 
model that can output estimated class probabilities and unseen calibration data 
that was not used for training:
1. Predict �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for the unseen calibration data and compute calibration 

scores as 𝑠𝑠𝑖𝑖 = 1 − �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 for the true classes
2. Find the percentile (�𝑞𝑞1−𝛼𝛼) of the calibration scores corresponding to your level of 

significance
3. Form predictive sets with all classes whose estimated probability is greater than 1 − �𝑞𝑞1−𝛼𝛼

Conformal Prediction for Classification
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Applications to Classification

• Suppose we are interested in predicting a satellite’s mission given its orbital 
characteristics (Perigee, Apogee and Eccentricity)

• Collect 5464 data points and randomly split data into training (4675 data 
points), calibration (520 points points) and testing (269 data points)

• Train a Random Forest model and tune hyperparameters with cross-validation
– Model has 10-Fold CV accuracy of 87%

• Apply the model to estimate class probabilities on the calibration data, and 
calculate calibration scores against the true classes
– For 𝛼𝛼 = 10%, Obtain 𝑞𝑞0.9 = 0.806, which implies we’ll include any class into our 

predictive sets whose estimated probability greater than 1 − 𝑞𝑞0.9 = 0.194
• Performing this procedure on the testing data results in a 91% coverage (meaning 91% of the 

predictive sets created following this rule contained the true label in the testing data)

– Some examples from the Testing Data:

14

True Class Predictive Set Covered?

‘Communications’ ‘Communications’ Yes

‘Tech Development’ ‘Space Science’, ‘Tech Development’ Yes

‘Communications’ ‘Earth Obs’, ‘Space Science’, ‘Tech Development’ No
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Future Research

• Hierarchical classification for WBS normalization
– Applying conformal prediction to hierarchical classification for WBS normalization can 

direct human intervention to elements with large prediction sets (i.e., where there the 
algorithm is highly uncertain)

• Application of Conformal Prediction in time-series data
– Developing a modified conformal prediction technique that incorporates adjustments for 

autocorrelation and data trends
– Impacts on economic forecasting, stock market predictions, weather forecasting, etc.

• Conformal Prediction in High-Dimensional data settings
– Integrating conformal prediction with principal component analysis (PCA) to reduce 

dimensionality and handle situations where the number of variables is large and the 
number of observations is low

• Many packages in R and Python to facilitate conformal prediction
– MAPIE (Model Agnostic Prediction Interval Estimator) for Python
– tidymodels for R
– Awesome Conformal Prediction for a curated list of “videos, tutorials, books, papers, 

PhD and MSc theses, articles and open-source libraries”
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Conclusions

• Conformal prediction enables distribution free uncertainty with any machine 
learning algorithm
– Only requirement is the exchangeability of the data (a weaker form of the i.i.d. 

assumption we make with classical approaches)
– We get a rigorous statistical coverage guarantee regardless of how well the underlying 

model fits the data
– As we embrace more accurate regression techniques that are less interpretable than 

classical approaches, we don’t have to sacrifice predictive uncertainty

• CV+ is a conformal technique that balances computational cost with the need 
for lots of calibration data for regression problems
– If you’re already performing cross-validation, CV+ is basically computationally free
– CV+ offers guaranteed coverage of at least 1 − 2 ∗ 𝛼𝛼 with empirical coverage often 

close to 1 − 𝛼𝛼
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Backup
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Full Conformal Example
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y9 y9

y10 x10

? x11

y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

y6 x6

y7 x7

y8 x8

y9 y9

y10 x10

y1 x11

Augmented 
Data

𝑓𝑓𝑦𝑦𝑦

𝑅𝑅𝑖𝑖
𝑅𝑅1 = 𝑦𝑦1 −  𝑓𝑓𝑦𝑦𝑦 𝑥𝑥1  

𝑅𝑅2 = 𝑦𝑦2 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥2  

𝑅𝑅3 = 𝑦𝑦3 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥3  

𝑅𝑅4 = 𝑦𝑦4 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥4  

𝑅𝑅5 = 𝑦𝑦5 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥5  

𝑅𝑅6 = 𝑦𝑦6 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥6  

𝑅𝑅7 = 𝑦𝑦7 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥7  

𝑅𝑅8 = 𝑦𝑦8 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥8  

𝑅𝑅9 = 𝑦𝑦9 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥9  

𝑅𝑅10 = 𝑦𝑦10 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥10  

𝑅𝑅11 = 𝑦𝑦1 − 𝑓𝑓𝑦𝑦𝑦 𝑥𝑥11  

Augmented Data 
Residuals

y1 is in the PI if
 𝑅𝑅11 ≤  𝑄𝑄1−𝛼𝛼 𝑅𝑅1, … ,𝑅𝑅11

y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

y6 x6

y7 x7

y8 x8

y9 y9

y10 x10

y.. x11

𝑓𝑓𝑦𝑦..

𝑅𝑅𝑖𝑖
𝑅𝑅1 = 𝑦𝑦1 −  𝑓𝑓𝑦𝑦.. 𝑥𝑥1  

𝑅𝑅2 = 𝑦𝑦2 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥2  

𝑅𝑅3 = 𝑦𝑦3 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥3  

𝑅𝑅4 = 𝑦𝑦4 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥4  

𝑅𝑅5 = 𝑦𝑦5 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥5  

𝑅𝑅6 = 𝑦𝑦6 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥6  

𝑅𝑅7 = 𝑦𝑦7 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥7  

𝑅𝑅8 = 𝑦𝑦8 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥8  

𝑅𝑅9 = 𝑦𝑦9 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥9  

𝑅𝑅10 = 𝑦𝑦10 − 𝑓𝑓𝑦𝑦.. 𝑥𝑥10  

𝑅𝑅11 = 𝑦𝑦.. − 𝑓𝑓𝑦𝑦.. 𝑥𝑥11  

y.. is in the PI if
 𝑅𝑅11 ≤  𝑄𝑄1−𝛼𝛼 𝑅𝑅1, … ,𝑅𝑅11

y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

y6 x6

y7 x7

y8 x8

y9 y9

y10 x10

y10 x11

𝑓𝑓𝑦𝑦𝑦𝑦

𝑅𝑅𝑖𝑖
𝑅𝑅1 = 𝑦𝑦1 −  𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥1  

𝑅𝑅2 = 𝑦𝑦2 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥2  

𝑅𝑅3 = 𝑦𝑦3 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥3  

𝑅𝑅4 = 𝑦𝑦4 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥4  

𝑅𝑅5 = 𝑦𝑦5 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥5  

𝑅𝑅6 = 𝑦𝑦6 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥6  

𝑅𝑅7 = 𝑦𝑦7 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥7  

𝑅𝑅8 = 𝑦𝑦8 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥8  

𝑅𝑅9 = 𝑦𝑦9 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥9  

𝑅𝑅10 = 𝑦𝑦10 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥10  

𝑅𝑅11 = 𝑦𝑦10 − 𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥11  

y10 is in the PI if
 𝑅𝑅11 ≤  𝑄𝑄1−𝛼𝛼 𝑅𝑅1, … ,𝑅𝑅11

Use Presentation Mode

Return
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Split Conformal Example

20

y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

y6 x6

y7 x7

y8 x8

y9 y9

y10 x10

Data
y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

Train

𝑅𝑅𝑖𝑖𝐶𝐶

𝑅𝑅6𝐶𝐶 = 𝑦𝑦6 − 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥6  

𝑅𝑅7𝐶𝐶 = 𝑦𝑦7 − 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥7  

𝑅𝑅8𝐶𝐶 = 𝑦𝑦8 − 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥8  

𝑅𝑅9𝐶𝐶 = 𝑦𝑦9 − 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥9  

𝑅𝑅10𝐶𝐶 = 𝑦𝑦10 − 𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥10  

Calibration
Residuals

𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

y x

y6 x6

y7 x7

y8 x8

y9 y9

y10 x10

Calibration

Prediction Intervals are formed with
 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥11 ± 𝑄𝑄1−𝛼𝛼 𝑅𝑅6𝐶𝐶 , … ,𝑅𝑅10𝐶𝐶

Return
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CV+ Example

21

y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

y6 x6

y7 x7

y8 x8

y9 y9

y10 x10

Data

y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

Fold 1

𝑅𝑅𝑖𝑖𝐶𝐶𝐶𝐶

𝑅𝑅6𝐶𝐶𝐶𝐶 = 𝑦𝑦6 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥6  

𝑅𝑅7𝐶𝐶𝐶𝐶 = 𝑦𝑦7 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥7  

𝑅𝑅8𝐶𝐶𝐶𝐶 = 𝑦𝑦8 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥8  

𝑅𝑅9𝐶𝐶𝐶𝐶 = 𝑦𝑦9 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥9  

𝑅𝑅10𝐶𝐶𝐶𝐶 = 𝑦𝑦10 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥10  

CV+
Residuals

𝑓𝑓−𝑆𝑆2

y x

y6 x6

y7 x7

y8 x8

y9 y9

y10 x10

Fold 2

𝑓𝑓−𝑆𝑆1

𝑅𝑅𝑖𝑖𝐶𝐶𝐶𝐶

𝑅𝑅1𝐶𝐶𝐶𝐶 = 𝑦𝑦1 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥1  

𝑅𝑅2𝐶𝐶𝐶𝐶 = 𝑦𝑦2 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥2  

𝑅𝑅3𝐶𝐶𝐶𝐶 = 𝑦𝑦3 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥3  

𝑅𝑅4𝐶𝐶𝐶𝐶 = 𝑦𝑦4 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥4  

𝑅𝑅5𝐶𝐶𝐶𝐶 = 𝑦𝑦5 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥5  

CV+
Predictions

Low High

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅1𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅1𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅2𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅2𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅3𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅3𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅4𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅4𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅5𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅5𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅6𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅6𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅7𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅7𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅8𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅8𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅9𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅9𝐶𝐶𝐶𝐶

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅10𝐶𝐶𝐶𝐶 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅10𝐶𝐶𝐶𝐶

𝛼𝛼 quantile of these 
values is the low 
bound of the PI

1 − 𝛼𝛼 quantile of 
these values is the 

high bound of the PI

Return
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𝑅𝑅𝑖𝑖𝐿𝐿𝐿𝐿

𝑅𝑅1𝐿𝐿𝐿𝐿 = 𝑦𝑦1 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥1 / �𝜌𝜌−𝑆𝑆1(𝑥𝑥1)

𝑅𝑅2𝐿𝐿𝐿𝐿 = 𝑦𝑦2 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥2 / �𝜌𝜌−𝑆𝑆1(𝑥𝑥2)

𝑅𝑅3𝐿𝐿𝐿𝐿 = 𝑦𝑦3 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥3 / �𝜌𝜌−𝑆𝑆1(𝑥𝑥3)

𝑅𝑅4𝐿𝐿𝐿𝐿 = 𝑦𝑦4 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥4 / �𝜌𝜌−𝑆𝑆1(𝑥𝑥4)

𝑅𝑅5𝐿𝐿𝐿𝐿 = 𝑦𝑦5 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥5 / �𝜌𝜌−𝑆𝑆1(𝑥𝑥5)

𝑅𝑅𝑖𝑖𝐿𝐿𝐿𝐿

𝑅𝑅6𝐿𝐿𝐿𝐿 = 𝑦𝑦6 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥6 / �𝜌𝜌−𝑆𝑆2(𝑥𝑥6)

𝑅𝑅7𝐿𝐿𝐿𝐿 = 𝑦𝑦7 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥7 / �𝜌𝜌−𝑆𝑆2(𝑥𝑥7)

𝑅𝑅8𝐿𝐿𝐿𝐿 = 𝑦𝑦8 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥8 / �𝜌𝜌−𝑆𝑆2(𝑥𝑥8)

𝑅𝑅9𝐿𝐿𝐿𝐿 = 𝑦𝑦9 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥9 / �𝜌𝜌−𝑆𝑆2(𝑥𝑥9)

𝑅𝑅10𝐿𝐿𝐿𝐿 = 𝑦𝑦10 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥10 / �𝜌𝜌−𝑆𝑆2(𝑥𝑥10)

Locally Weighted CV+ Example

22

y x

y1 x1

y2 x2

y3 x3

y4 x4

y5 x5

Fold 1 Residuals

𝑓𝑓−𝑆𝑆2

𝑅𝑅𝑖𝑖
𝑅𝑅1 = 𝑦𝑦1 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥1  

𝑅𝑅2 = 𝑦𝑦2 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥2  

𝑅𝑅3 = 𝑦𝑦3 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥3  

𝑅𝑅4 = 𝑦𝑦4 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥4  

𝑅𝑅5 = 𝑦𝑦5 − 𝑓𝑓−𝑆𝑆2 𝑥𝑥5  

�𝜌𝜌 −
𝑆𝑆 2

(𝑥𝑥
𝑖𝑖)

Fold 2
y x

y6 x6

y7 x7

y8 x8

y9 x9

y10 x10

𝑓𝑓−𝑆𝑆1

𝑅𝑅𝑖𝑖
𝑅𝑅6 = 𝑦𝑦6 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥6  

𝑅𝑅7 = 𝑦𝑦7 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥7  

𝑅𝑅8 = 𝑦𝑦8 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥8  

𝑅𝑅9 = 𝑦𝑦9 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥9  

𝑅𝑅10 = 𝑦𝑦10 − 𝑓𝑓−𝑆𝑆1 𝑥𝑥10  

�𝜌𝜌 −
𝑆𝑆 1

(𝑥𝑥
𝑖𝑖)

LW CV+
Predictions

Low High

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅1𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11) 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅1𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11)

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅2𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11) 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅2𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11)

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅3𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11) 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅3𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11)

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅4𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11) 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅4𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11)

𝑓𝑓−𝑆𝑆1 𝑥𝑥11 − 𝑅𝑅5𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11) 𝑓𝑓−𝑆𝑆1 𝑥𝑥11 + 𝑅𝑅5𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆1(𝑥𝑥11)

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅6𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11) 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅6𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11)

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅7𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11) 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅7𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11)

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅8𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11) 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅8𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11)

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅9𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11) 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅9𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11)

𝑓𝑓−𝑆𝑆2 𝑥𝑥11 − 𝑅𝑅10𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11) 𝑓𝑓−𝑆𝑆2 𝑥𝑥11 + 𝑅𝑅10𝐿𝐿𝐿𝐿 ∗ �𝜌𝜌−𝑆𝑆2(𝑥𝑥11)

𝛼𝛼 quantile of these 
values is the low 
bound of the PI

1 − 𝛼𝛼 quantile of 
these values is the 

high bound of the PI
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