OAUGUR

Schedule Risk at Early Acquisition

ICEAA Professional Development & Training Workshop

May 14th – May 16th, 2024

Presenters: Gabriella Magasic, Sam Kitchin

Presenter Bios

Gabriella Magasic

- Augur Consulting
- 3+ Years of Industry Experience
 - Background is schedule and performance management
 - **MA in Applied Economics**
- Supports DOD customers

Sam Kitchin

- Augur Consulting
- 11+ Years of Industry Experience
 - Background is cost, schedule, and performance management (Incl. EVM)
 - o ICEAA Certified CCEA
- Support a range of DOD and DOE customers

Outline

- Background and Purpose
- Risk Analysis Techniques
- Informed Recommendations
- Additional Considerations
- Conclusion

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

Background and Purpose

Intent

- Knowledge of schedule risk & uncertainty is critical for effective project management
 - GAO Scheduling Best Practices include "Conducting a Schedule Risk Analysis (SRA)"
 - Guidance is focused on Monte Carlo methods for mature schedules
- In low maturity environments, techniques for modeling risk & uncertainty must be modified

Goal: Identify strategies to assess schedule uncertainty in early acquisition

What is "Early Acquisition"?

- No singular definition for "Early Acquisition"
- In early acquisition, the "schedule" may not be an integrated master schedule (IMS)
- Level of detail driven by program needs or time/resource constraints

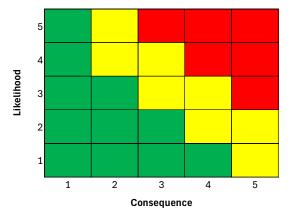
No matter what the maturity of a program may be, there is a need to understand the schedule, risk, and uncertainty to support the success of the project

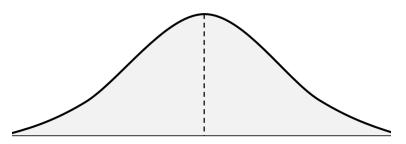
Two Types of Low Maturity

Low Schedule Maturity

- Schedule may exist but lack definition
- High-level WBS or IMS
- Captures major deliverables & milestones; lack detail in particular sections
- Not constructed to include task level detail
- Driven by schedule only

Low Technical/Acquisition Maturity

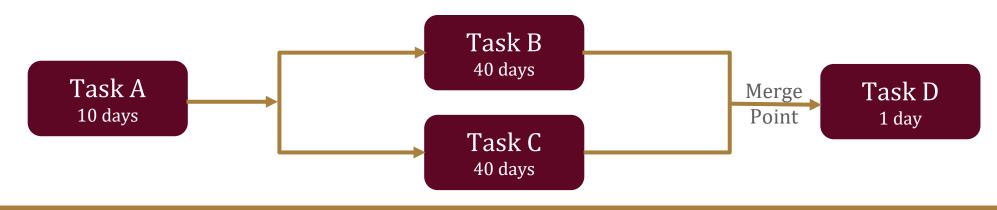

- A lack of maturity outside of the schedule
- No full understanding of the project scope
 - Impossible to construct detailed schedule without full understanding of work
 - Major milestones, performers, and deliverables unclear
- Unknown factors drive schedule



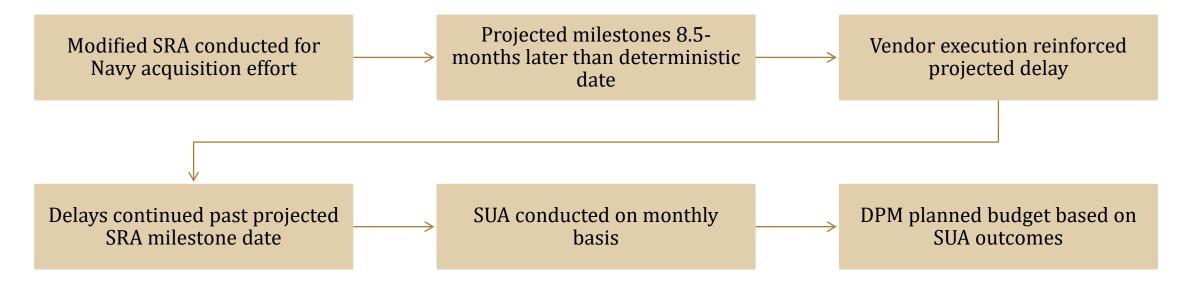
Risk vs Uncertainty

Often used interchangeably, but distinct concepts!

- Risk: A discrete event with an estimated probability of occurrence and corresponding duration impact.
 "Threats" have negative impacts while "Opportunities" could positively impact the project
- Uncertainty: The total range of durations a schedule task or program may take based on unknowable factors
- Deterministic Schedule: A schedule that has not been adjusted for risk or uncertainty



Risk & Uncertainty in Schedules


- Some nuances to schedule risk and uncertainty
- Uncertainty typically applied to task durations
 - Often based on expert inputs (best case/worst case/most likely)
 - Tasks are detailed and change quickly

ଁ AUGUR

- Often difficult to gather historical data to inform risk models
- Merge bias is result of schedule network logic

Realistic Applications of Risk and Uncertainty Analysis

- Benefits of risk and uncertainty analysis:
 - Support cost planning
 - Inform external dependencies
 - Notify PMs on frictional areas within their program

*Note: Schedule Uncertainty Analysis (SUA) – term used by Augur to describe a schedule with uncertainty distributions applied to tasks but without risks integrated into the schedule

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

Risk Analysis Techniques

Techniques Introduction

- The following slides identify techniques for addressing schedule risk and uncertainty in early acquisition
- Many factors will impact the choice of technique
 - O Project size and duration
 - O Level of detail in the schedule
 - O Leadership use cases, needs, and priorities
- There is no single solution that will work for any project
- In most cases, techniques will need to be tailored or combined

Techniques

- Traditional Schedule Risk Analysis
 Modified Schedule Risk Analysis
 What-If Analysis
 Risk Register
 Added Risk Factor
 Schedule Estimating Relationships
- 7. Subjective Assessment

1. Traditional Schedule Risk Analysis

Overview

- Model with Monte Carlo simulations
- Uncertainty applied at lowest level task
- Risks integrated through logic
- Built out IMS and Risk Register needed

	ID	Task Name			Duration	Start		Fi	nish	D	ouration Uncertainty	
	121	21 Full SRA			100 days	Tue 2/6,	/24	Mon	6/24/24			
	122	Software Deve	lopme	ent	100 days	Tue 2/6,	/24	Mon	6/24/24			
	123	Phase 1			40 days	Tue 2/6,	/24	Mon	4/1/24			
	124	Task A			10 days	Tue 2/6,	/24	Mon	2/19/24	PERT*(72.6,100,127.4,4,15,85)	
	125	Task B			15 days	Tue 2/20	/24	Mon	3/11/24	PERT*(60.5,100,139.5,4,15,85)	
	126	Task C			15 days	Tue 3/12	/24	Mon	4/1/24	PERT*(81.6,120.2,160.6,4,15,85)	
	127	Phase 2			60 days	Tue 4/2,	/24	Mon	6/24/24			
5					20 days	Tue 4/2,	24 Mon 4/29/24		PERT*(72.6,100,127.4,4,15,85)			
-				20 days	Tue 4/30	/24	Mon	n 5/27/24 PERT*(72.6,100,127.4,4,15,85				
4					20 days	Tue 5/28	/24	Mon	6/24/24	PERT*(84.8,111.7,139.6,4,15,85)	
3					60 days	Mon 4/1	/24	Mon	6/24/24			
2			Ì		0 days	Mon 4/1	/24	Mon	4/1/24	30		
1					0 days	Mon 6/24	1/24	Mon	6/24/24	100		
	1	2 3 4	5	Risk	Risk Desc	ription	Likelih	iood (%)	Duration	Impact	Activities Impacted	
		Consequence			Risk Event Re	gister						
			136	RE1	Procuremer	it Delay		75		30	126	
			137	RE2	Major SW Failure			10		100	130	

Pros

- Apply uncertainty and view results at lowest level
- Well-informed forecasted dates
- Insight into impact to critical path or alternative critical paths

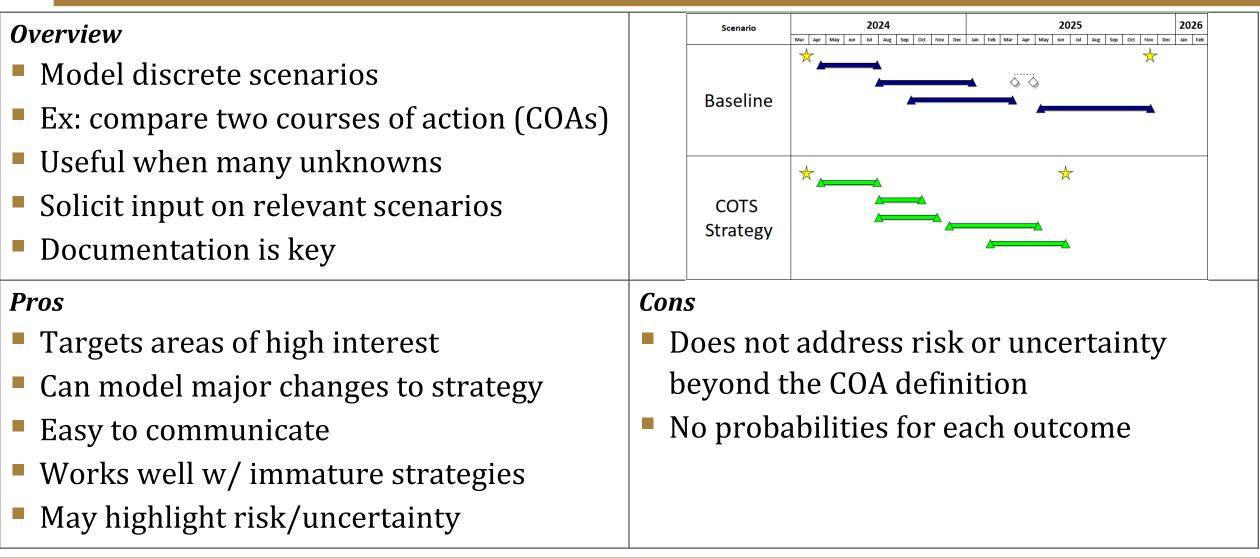
Cons

- Needs substantial data/risk knowledge
- Uncertainty input requires SME buy-in
- Time consuming
- Requires specialized software
- Difficult to apply in early acquisition

2. Modified Schedule Risk Analysis

Overview

- Schedule "flattened"
- Uncertainty applied more generally
- Understanding of critical events & driving paths required
- Good middle-ground solution

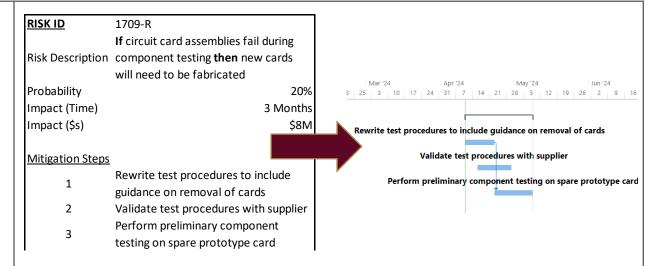

Pros

- Similar outputs to traditional SRA
- Benefits large program schedules
- Can assess two schedules on same level
- Faster implementation of uncertainty
- More apt for early acquisition programs

ID		Task	Name	Duration	Start		Finish	D	uration Uncertainty
138	Mod	lified SR	A	100 days	Tue 2/6/24	N	1on 6/24/24		
139	So	ftware [Development	100 days	Tue 2/6/24	N	1on 6/24/24		
140	Р	hase 1		40 days	Tue 2/6/24	Ν	/lon 4/1/24	PERT*	(60.5,120.2,160.6,4,15,85)
141	Р	hase 2		60 days	Tue 4/2/24	N	1on 6/24/24	PERT*	(72.6,111.7,139.6,4,15,85)
142	Ris	k Event	Register	60 days	Mon 4/1/24	N	1on 6/24/24		
143	Р	rocuren	nent Delay	0 days	Mon 4/1/24	Ν	/lon 4/1/24	30	
144	Ν	/lajor SV	V Failure	0 days	Mon 6/24/24	N	1on 6/24/24	100	
	ID	Risk	Risk Dee	scription	Likelihood (261	Duration In	nact	Activities Impacted
	142		Risk Event Re	•	Elicentiood	/0/	Bulation	ipaer	Activities impacted
Ī	143	RE1	Procureme	ent Delay		75		30	140
Ī	144	144 RE2 Major SW		ailure	;		.0 100		141
-						·			
<i>C</i> (ons								

- More difficult to apply risk events w/ logic
- Less informed critical path
- Significant data requirements
- Extra effort required to flatten schedule
- Specialized software likely required

3. What-If Analysis


Risk Register

Overview

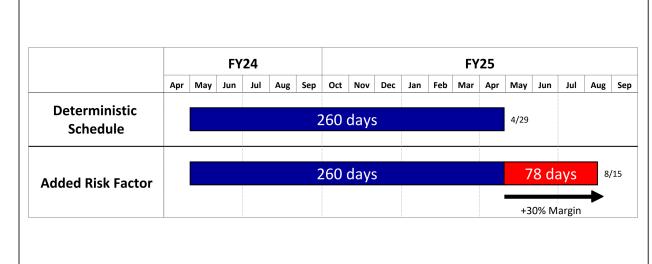
- Use Risk Register to model risk
- Impact with probability of occurrence
- Incorporate mitigation strategies into IMS
- Detailed tracking aids implementation
- Track opportunities as well as risks

Pros

- Models risks identified by stakeholders and documented in project artifacts
- Leverages analysis and rigor applied by risk management team
- Mitigation strategies tracked in schedule

Cons

- Need mature risk management process
- Projects in early acq. may not have register
- Risks can be difficult to model
- Does not capture duration uncertainty


Added Risk Factor

Overview

- Flat % of total duration or sub-element
- Based on data/rules of thumb/fixed rates
- Applies to major project elements or project in their entirety
- Repetitive/standardized timelines

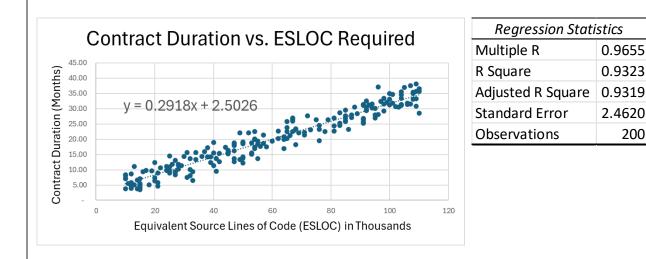
Pros

- Applicable in most scheduling settings
- Based on historical project data
- Easily combined with other techniques
- Models repetitive processes well
- Not time consuming

Cons

- No insight into Critical Path (CP) or schedule friction points
- No identification of task level uncertainty or impact of risk events
- Less meaningful without historical data

ା**AUGUR**


Schedule Estimating Relationships (SERs)

Overview

- Mathematical models of duration as function of technical & program factors
- Modify assumptions and quantify impact
- Regression provides prediction interval
- Generate optimistic & pessimistic results

Pros

- Analysis is backed by actual data
- SERs can be reused
- Easy to see impact of changing inputs
- Works well as a secondary methodology

Cons

- Difficult to gather data
- Data must be reliable and relevant
- Unlikely to be useful for task level analysis

୍ଷ **AUGUR**

200


Subjective Assessment

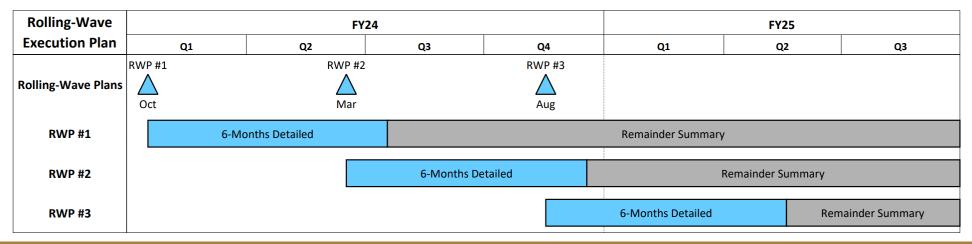
Overview

- Input from subject matter expert (SME)
- Quantifies program unknowns
- Looks at major program elements; SME estimates rational range of outcomes
- Built upon as the program matures

Pros

- Can be done quickly w/ minimal effort
- Mature schedule products not required
- Applicable to early acquisition programs
- No IMS or risk information required

Cons


- Limited justifications in forecasted dates
- Bare-bones estimate
- Requires SME familiarity with project to provide realistic project duration ranges
- No reasoning behind the variance of dates

ា**Augur**

Informed Recommendations

Recommend "Hybrid" technique

- One method may not be a perfect fit; two or more will better meet program needs
- Schedules in early acquisition are not fully mature and will continue to develop
 - A schedule risk analysis is not a 'one and done' effort.
 - Assessment of risk should mature alongside the schedule development
- Rolling wave planning

Application of Techniques

WBS Description	WBS Lvl	Risk & Uncertainty Application	Scenario
Sample Program Name	1		
Development	2		
Government Design	3		
Warfare Center	4	Traditional SRA	A detailed IMS exists with historical and SME information to inform applicable uncertainty distributions and risks
Contractor Support	4	Modified SRA	A detailed IMS exists but common groupings of tasks can be identified. Tasks are bucketed and assigned an uncertainty distribution. Risks are still captured within the SRA
Vendor Development Contract	3		
Systems Engineering	4	Applied Risk Factor	Analysis of analogous contracting efforts shows an average delay of X% of the baseline duration
Prototype HW Fabrication	4	Risk Register	Parts procurement risk identified, and mitigation steps built into schedule if part delayed
Integration	4	Subjective Assessment	A SME identifies the low/most-likely/high duration estimates for integration
Vendor Test	4	Schedule Estimating Relationship	A regression analysis considering multiple factors that affect duration to generate a worst case and best case for the duration of the test event
Government Test	3	What-If Analysis	Two scenarios modeled; one where the system passes and one where it does not

Additional Considerations

- Paper addresses several other benefits, weaknesses and considerations for schedule risk and uncertainty analysis
 - O Improved schedule management
 - Benefits to improving cost outcomes
 - Better fidelity in cost estimates
 - Align funding to execution
 - Ability to identify resource constraints
- Early project buy-in can lead to better future outcomes

Conclusion

Schedules are models

- Output is the result of assumptions, inputs, and calculations
- Goal is to align to reality, but result will never be perfect
- Analysis of risk & uncertainty can be used to quantify and predict variability in schedule results
- In early acquisition, projects will need to be creative
 Presentation identified techniques, but tailoring will be necessary
 Often a hybrid solution will be most relevant
- Schedule risk & uncertainty is critical at any stage of a project

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

Questions?

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

Backup

References

- [1] U.S. Government Accountability Office, "Schedule Assessment Guide: Best Practices for Project Schedules," pp. 99-120, 2015.
- [2] AACE International, "(PUBLIC REVIEW DRAFT) AACE® International Recommended Practice No. 132R-23: SCHEDULE RISK ANALYSIS MATURITY MODEL," *AACEI RP,* p. 26, 2023.
- [3] NASA, "Appendix K: Schedule Estimating Relationship (SER) Development and Model Inputs," *NASA Cost Estimating Handbook Version 4.0*, pp. K-1 K-11, 2015.
- [4] ICEAA, "Cost and Schedule Risk Analysis," CEBoKWikiDev, 9 July 2021. [Online]. Available: https://wikidev.iceaaonline.com/w/index.php?title=Cost_and_Schedule_Risk_Analysis&oldid=7436. [Accessed 29 January 2024].
- [5] The Naval Center for Cost Analysis, "Joint Cost Schedule Risk and Uncertainty Handbook," pp. 1-80, 2014.
- [6] National Defense Industrial Association: Integrated Program Management Division, "Planning & Scheduling Excellence Guide (PASEG)," pp. 145-160, 2019.

Acronyms

Acronym/Abbreviation	Meaning				
AS	Acquisition Strategy				
СОА	Course of Action				
СР	Critical Path				
FY	Fiscal Year				
GAO	Government Accountability Office				
IMS	Integrated Master Schedule				
PM	Program Manager				
PRS	Program Roadmap Schedule				
SER	Schedule Estimating Relationship				
SME	Subject Matter Expert				
SRA	Schedule Risk Analysis				
SUA	Schedule Uncertainty Analysis				
WBS	Work Breakdown Structure				

Abstract

It can be difficult to construct a realistic schedule early in the acquisition lifecycle due to the limited certainty of requirements, design decisions, and other key elements of program planning. Understanding risk and uncertainty in a schedule is essential, and the GAO Scheduling Guide includes "Conducting a Schedule Risk Analysis" as one of the 10 Best Practices. A schedule risk analysis (SRA) can provide quantitative insight into potential areas of delay along with associated cost impacts. However, a wellformed SRA requires clear input and structured analysis of risk events and uncertainty. This paper discusses how to address schedule risk in low maturity projects by identifying the unique challenges in early acquisition environments, investigating different risk modeling techniques, and analyzing how uncertainty must be interpreted and applied early in the project lifecycle.

Technique Summary

Technique	Models Uncertainty	Models Risk Events	Monte Carlo	Requires Detailed IMS	Data Driven	Time to Implement
Traditional Schedule Risk Analysis				Yes		Long
Modified Schedule Risk Analysis				Yes		Med
What-If Analysis				Possibly		Med
Risk Register				Possibly		Short
Added Risk Factor				No		Short
Schedule Estimating Relationships				No		Long
Subjective Assessment				No		Short

