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Abstract 

Studies on possible cost variances in major acquisition projects focus on total project costs in order to 

come to plausible project budgets with a confidence level of 80%. Different lognormal probability 

distributions have been worked out representing different states of uncertainty. However, these 

models cannot be applied when using risk management software for deriving the total project costs 

based on cost probability distributions for WBS elements. Due to a limited processing capacity, risk 

management software demands a division of the underlying probability distributions into intervals. A 

simple discretization of the models developed to date is not possible, as these models contain 

unrealistic values in the tails. Based on simulation studies, three lognormal probability distributions are 

presented that meet these challenges. Finally, some practical hints are given on the minimum number 

of intervals, by which the curvature of the probability distribution is still represented, and on how to 

interpret the joint CDF’s not-defined areas. 

1 Problem Definition 
The studies on possible cost variances in major acquisition projects have had the focus on regarding 

total project costs when modelling Cost Growth Factor (CGF) probability distributions. These studies 

aim at assisting project cost planners when determining the Value at Risk 80 (VaR80), demanded by 

U.S. Weapon Systems Acquisition Reform Act of 2009. Different lognormal probability distributions 

had been worked out (Garvey, 2008; Lee et al. 2012; Covert, 2013; Thomas & Fitch, 2014; McClary, 

2021).  

When calculating the variance of total project costs, which is based on the (additive) convolution of 

WBS elements’ cost probability distributions (e. g. Garvey, 2014, 6), a challenge arises when realizing 

the calculation with support of risk management software. Then, the convoluting is based on a 

discretization of each underlying cost probability distribution function (PDF) due to limited processing 

capacity (see e. g. Smith, 1993; Woodruff & Dimitrov, 2018). Each PDF is partitioned in a small 

number of equal width intervals (Klugman et al., 2019, 517-519; Merkhofer, 1975, 72-77; Tanaka & 

Toda, 2013, 447), and each interval midpoint is used as data point when convoluting the PDFs. 

Three challenges result from the approach of discretizing a CGF probability distribution:  

(a) Inclusion of unrealistic events. In the above-mentioned models, empirical cost variances of total 

project costs are approximated with lognormal probability distribution where the input value lies 

near zero on the left side and is not limited on the right side. Therefore, functional values 

(probabilities) are given for events that are implausible to occur at all.  
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(b) Number of data points. There is less evidence regarding the discretization of lognormal probability 

distributions. Further, the research published focuses on the utilization of a very small number of 

intervals. It is not clear whether the published results can be applied. 

(c) Interpretation of the joint CDF’s not-defined areas. Mathematically, the range between the data 

points of a discretized PDF (and, therefore, of a joint CDF based on discretized PDFs) is a not-

defined area. Therefore, the VaR80, which is identical with the percentile 80 in the case of a CGF 

probability function, is defined by the first value which exceeds the threshold, the fractile 0.8. 

However, when creating a joint CDF from discretized PDFs a closer approximation can be 

reached. 

The outline of the paper is as follows: The following section 2 presents three CGF probability 

distributions representing different degrees of uncertainty, which overcome the challenges given 

above. Section 3 gives the results of a simulation study in which the fitting with the true PDF’s 

curvature is analyzed. Section 4 gives, based on a fictitious example, practical hints for discretizing a 

PDF and, further, for interpreting the joint CDF. Section 5 summarizes the experiences made. 

 

2 Truncated lognormal Cost Growth Factor-probability 
density functions 
The task of modelling empirical experience in major acquisition projects mainly focuses on imaging the 

overrun of planned cost – and have integrated in their models CGF-values which are hardly expected 

to occur. When regarding planned costs of milestone C on an inflation-adjusted base year rate, the 

following CGF values can be described as extremely improbable: a CGF below 0.5 (Covert, 2013, 24; 

McClary, 2022, 31) or below 0.85 (Thomas & Fitch, 2014, A60), and a CGF above 3.0 (Covert, 2013, 

24; Lee et al., 2012, 41). 

When carrying out probabilistic project costing or, in general, a probabilistic scenario analysis (e. g. 

Smith, 1993; Woodruff & Dimitrov, 2018), the task of modelling is different: The total relevant event 

space must be mapped, disregarding extremely improbable events for ease of calculation. This 

means, there is a need for modelling a CGF probability distribution without regarding extremely 

improbable events. 

Further, to the authors mind, a modeled CGF probability distribution should take into account that the 

base costs are determined to the best of a cost planner’s knowledge. If, within a model, base costs are 

not regarded as most likely costs (see Table 1, Figure 1), a disappointment on the site of the cost 

planners can be expected. To avoid such an irritation and to reach a higher acceptance, a CGF 

probability distribution should be modeled which gives the most likely case the CGF value of one (and 

neither 0.8 times the base costs nor 1.3 times the base costs). 
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Figure 1: Modeled Cost Growth Factor probability distributions in research 

 

Table 1: Key figures of Cost Growth Factor probability distributions 
  Description  CGF 

”1” at 
Perc.: 

Me‐
dian 

Mode  Mean  P70  P80  P90  CV 
(natural 
scale) 

mu 1.0; sigma(log) 0.15 
(Thomas & Fitch, 2014) 

low  50.5  1.001  0.977  1.011  1.082  1.136  1.211  0.151 

mu 1.0; sigma(log) 0.25 
(Thomas & Fitch, 2014) 

medium  50.3  1.001  0.941  1.032  1.142  1.235  1.379  0.254 

mu 1.11; sigma(log) 
0.19 (Lee et al., 2012) 

not defined  29.2  1.109  1.073  1.129  1.226  1.298  1.409  0.188 

mu 1.0; sigma(log) 0.35 
(Thomas & Fitch, 2014) 

high  50.2  1.001  0.884  1.061  1.202  1.343  1.565  0.357 

CoD 0.2 (mu 1.16; 
sigma(log) 0.21) 
(Garvey, 2008) 

low  25.3  1.157  1.103  1.183  1.295  1.385  1.523  0.217 

mu 1.0; sigma(log) 0.40 
(Covert, 2013b) 

high  50.2  1.001  0.854  1.073  1.235  1.400  1.670  0.403 

CoD 0.3 (mu 1.25; 
sigma(log) 0.34) 
(Garvey, 2008) 

medium  25.2  1.253  1.121  1.311  1.496  1.664  1.928  0.333 

mu 1.4; sigma(log) 0.27 
(McClary, 2021) 

not defined  8.6  1.451  1.349  1.501  1.673  1.823  2.048  0.269 

CoD 0.4 (mu 1.37; 
sigma(log) 0.47) 
(Garvey, 2008) 

high  25.1  1.370  1.103  1.356  1.748  2.027  2.489  0.425 

 

The first goal can be achieved by modeling a truncated lognormal PDF that ignores extremely 

improbable events. Setting of the location parameter mu of a lognormal CGF probability distribution 

above the value one, and so disregarding the questionable assumption that the baseline costs would 

always represent the median of a lognormal CGF probability distribution, can reach the second goal. 

This is founded by the observations of Coleman et al. (2009): They have shown that the planned costs 

(CGF=1) mainly lay below the median and that a setting of the location parameter mu above one is 

therefore indicated. 
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To achieve these goals, the author developed various lognormal probability distributions. 

Methodologically, a simulation model was created in which the input variable of a standard lognormal 

distribution was set between the values of 0.75 and 3.0, and the parameter mu above the value 1.0. 

The input values were discretized in 1000 equal width intervals and the probability distribution was 

derived for these intervals deploying Microsoft Excel 2016. Different simulations were run by varying 

the parameters mu and sigma through that an iteration to the numerical values for VaR80 and VaR90, 

given in Thomas & Fitch (2014, 32) for low, medium, and high uncertainty, were achieved. The 

decision criterion for the goodness of the solution was the minimum deviation of the sum of the 

absolute differences from the difference between the approximated and the given values of VaR80 

and, further, VaR90.1 

Table 2 gives the results achieved. Figure 2 illustrates the result by displaying the CGF in comparison 

to the CGFs of the distributions given in Table 1. 

The author proposes a review of these results based on the published empirical SAR data, assuming 

that the CDF is derived for relevant bandwidth between 0.75 and 3.0. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Cumulative distribution functions of the Cost Growth Factor probability 

distributions developed 

Table 3: Key figures of Cost Growth Factor probability distributions developed 
  Description  CGF 

“1” at 
Perc.: 

Medi
an 

Mode  Mean  P70  P80  P90  CV 
(natural 
scale) 

mu 1.02; sigma(log) 
0.14 (Kasprik, 2024; 
truncated data) 

low  44.8  1.019  1.001  1.030  1.094  1.139  1.208  0.130 

mu 1.04; sigma(log) 
0.21 (Kasprik, 2024; 
truncated data) 

medium  38.8  1.061  1.001  1.089  1.175  1.253  1.370  0.192 

mu 1.08; sigma(log) 
0.27 (Kasprik, 2024; 
truncated data) 

high  33.4  1.112  1.001  1.162  1.268  1.376  1.544  0.245 

 

1 This follows the “Method-of-Moments-Matching” approach (Shore, 1995; Au-Yeung, 2003). 
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3 The appropriate number of equal width interval when 
discretizing a probability density function 
Previous research has focused on how to discretize a probability distribution into three to five data 

points without the properties of the PDF deviating from the true PDF (Barbiero & Hitaj, 2021; Hadlock, 

2017; Hammond & Bickel, 2015; Tanaka & Toda, 2013, 447; Woodruff & Dimitrov, 2018). It is not clear 

whether the published results can be applied in particular in the case of a lognormal distribution, as is 

the case when working with CGF distributions. 

To recognize the general conditions, a pre-study was conducted. The aim was to analyze the effects 

of discretizing a probability distribution into five equally wide intervals covering the entire bandwidth. 

The effects were studied on the lognormal distribution presented in section 2 modelling a medium 

uncertainty (mu [natural scale] = 1.044; sigma [log scale] = 0.207; input values between 0.75 and 3.0) 

as well as for a normal distribution also representing a medium uncertainty. A normal distribution 

representing a medium uncertainty can be described as possessing a Coefficient of Variation (CV) of 

0.27 (Thomas & Fitch, 2014, 32). A normal distribution within the bandwidth of plus / minus 3.66 z 

reaches that CV-value if the input-values are transformed to represent a CGF between zero and two 

through which the CGF-value of one (the baseline costs) comes to lay at the mode of the distribution. 

This transformation is done by following the methodology of normalizing. For performing the 

calculations, the lognormal distribution is discretized in 1000 (equal width) intervals, the normal 

distribution in 999 (equal width) intervals. The calculations are performed with Microsoft Excel 2016. 

A visual inspection has shown (and has further been supported by the goodness of fit measures 

Goodness of Variance Fit,2 Kolmogorov Distance and Total Variation Distance) that the Five-interval-

solution cannot be regarded as appropriate image of the true probability density function.3 This is 

because the most relevant part of the distribution, i. e. the range in which the strongest change in the 

rate of direction occurs (here the marked range between red columns), is covered by just three to four 

intervals leading to data points that dramatically equalize the curvature, especially in case of the 

lognormal distribution (Figure 3 and 4). 

Inspired by this result, the effect of excluding the outer input-values by truncating the PDF at certain 

percentiles is examined to explore whether an appropriate Five-interval solution could be found. 

Both types of probability distributions from the preliminary study were selected, and two further 

degrees of uncertainty were modeled. (a) A low degree of uncertainty: a lognormal distribution with mu 

[natural scale] = 1.017, sigma [log scale] = 0.133 (with input values between 0.75 and 3.0), a normal 

distribution with z-values (plus / minus 5.14) leading to a CV of 0.19. (b) A high degree of uncertainty: 

a lognormal distribution with mu [natural scale] = 1.078, sigma [log scale] = 0.27 (with input values 

between 0.75 and 3.0), a normal distribution with z-values (plus / minus 2.59) leading to a CV of 0.37. 

 

 

2 The Goodness of Variance Fit (GVF) measure is designed to measure the classification’s goodness 

when regarding the total bandwidth via the internal (within-class) homogeneity (Armstrong et al., 2003; 

Schiewe, 2018; Smith, 1986) 

3 Gained values for Lognormal PDF: Goodness of Variance Fit: 0.692; Kolmogorov Distance 

(midpoints): 0.40; normalized TVD (data points): 0.139. Gained values for Standard Normal PDF: 

Goodness of Variance Fit: 0.848; Kolmogorov Distance (midpoints): 0.266; normalized TVD (data 

points): 0.133. 
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Figure 3: Nine- and Five-interval discretization - over the whole bandwidth (lognormal distribution) 
 
 
 
 

 

 

 

 

 

 

 

Figure 4: Nine- and Five-interval discretization - over the whole bandwidth (normal distribution) 

 

The heuristic, which was found in the pre-study (truncating the probability distribution at fractile 0.005 

and fractile 0.995), is cross-checked by truncating the probability distribution at fractile 0.025 and 

fractile 0.975. When truncating the probability distribution at fractile 0.025 and fractile 0.975, the 

positive effect of an increased number of intervals within the range, in which higher rates of change of 

direction predominantly occur, could be counteracted by an inacceptable increase of the interval 

probability. The reason for this is that the number of events in the event space is further reduced, 

which leads to a higher probability per event (data point). 

The discretization’s goodness of fit is measured by calculating the (normalized) „Total Variation 

Distance“ (TVD) (Gibbs & Su, 2002, 424; Markatou & Sofikitou, 2019, 8). For each data point, the 

estimated functional value is subtracted from the true value, is then set in absolute numbers and finally 

summed. The sum of all differences gives TVD. TVD measures the total (and unweighted) deviation 

derived from each data point’s functional value. When evaluating a probability function, the 

normalization of the TVD allows to determine the extent to which the estimated probability of all data 

points deviates from the true probability function in relation to the average probability of occurrence. 

The normalized TVD value of one represents an average deviation of 1 time the average probability 

per approximated data point, the value of zero for an average deviation of zero times the average 
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probability (a perfect fit). In order to draw this conclusion, the same number of data points for the 

approximation is required as is given in the true probability distribution. This is achieved by following 

the assumption of uniformity that each data point within an interval has the same probability of 

occurrence (Anderson et al., 2007, 136-138; Klugman et al., 2019, 517-518). A data point’s 

approximated probability is derived by averaging the interval probability over the number of data points 

in each interval. The author chooses 0.1 as critical value for the normalized TVD – a deviation of 10% 

the average probability. 

Secondly, the Kolmogorov distance (KD, also “Kolmogorov-Smirnov Distance”) is chosen. It compares 

a true cumulative probability of a data point with its approximated cumulative probability by subtracting 

the approximated cumulative probability from its true cumulative probability (Barbiero & Hitaj, 2021, 

10; Cohen et al., 2018; Drakakis & Radulovic, 2018; Rohatgi & Saleh, 2015, 585; Wilcox, 2012, 25-

26). The maximum difference in absolute numbers gives KD. KD reaches the value one in the 

(hypothetical) case when a data point’s cumulative probability is one and the corresponding value 

reaches zero (Wilcox, 2012, 26). KD captures not only the differences between the comparison points 

but also the impact of consecutive deviations of the same sign with regard to the ordered attributes of 

the variable. When comparing a discretized probability distribution with the true probability distribution, 

the cumulative probability of the interval midpoint is compared with the cumulative probability of the 

corresponding data point. KD values between 0.1 and 0.3 are reported in discretization studies 

(Keefer & Bodily, 1983, 603; Smith, 1993, 345). The author chooses 0.15 as the lowest acceptable 

deviation.  

For informational purposes, the rate of divergence between the first moments of the distributions 

(here: the expected value) is calculated: the difference between the probability-weighted interval 

midpoints to the true expected value, which is divided through true expected value (“Percentage Error 

Mean” [PEM]; Miller & Rice, 1983; Shore, 1995; Hadlock, 2017). This is done regarding the possible 

situation that the expected value is used as a decision criterion. PEM reaches the value of one in case 

of identical means. The author takes a critical view of the applicability of this criterion when assessing 

the goodness of a discretization because, when using this measure, a divergence in PEM is not only 

influenced by a divergence in the probability of the data point, but also by the numerical value of this 

data point. An identical difference between the approximated and the true probability of a data point 

leads to a higher divergence of the measure PEM in the case that the difference occurs apart from the 

true expected value. In the author's opinion, however, the goodness of a discretization should be 

measured independently of the position of the discrepancy on the bandwidth. 

The results of discretizing these six variants in 5, 7, and 9 equal width intervals within the range 

between fractile 0.005 and fractile 0.995 and, further, fractile 0.025 and fractile 0.975 are given in 

appendix 1. They show that under both conditions, following a truncation at the fractile 0.005 and 

0.995 resp. 0.025 and 0.975, seven equal width intervals can be regarded as appropriate minimum 

number of intervals. The critical values of TVD and KD are not exceeded.  

Figures 5 and 6 show the 5- and 7-interval solutions for the situation of discretizing the lognormal 

probability distribution, which range shows the strongest change in the rate of direction in a small 

partition of the bandwidth (the situation of low uncertainty). 

 

However, it should be noted that this study focuses on the curvature of the distribution and that some 

other criteria may require a higher number of intervals. 
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Figure 5: Seven- and Nine-interval discretization (low uncertainty ) - truncated at fractile 0.005 and 

0.995 

 

 

 

 

 

 

 

 

 

Figure 6: Seven- and Nine-interval discretization (low uncertainty) - truncated at fractile 0.025 and 

0.975 

 

Firstly, the interpretability of the joint distribution data points. When creating a joint PDF from 

discretized PDFs one should note that each data point is the midpoint of an (equal width) interval. 

When additively convoluting PDFs, each joint distribution data point represents the midpoint of an 

interval bounded by the sum of all lower respective of all upper bounds of the PDF intervals integrated 

(Nguyen, 2012, 180). Then it could be that the resulting interval width of the joint PDF becomes too 

wide so that the value of the information obtained is unacceptably diminished. 

Secondly, the position of the true mode within the mode interval. If the true mode (the baseline costs) 

does not come to lay at the interval midpoint of the mode interval, a remarkable distortion of the result 

must be expected. In that case, a flattening effect occurs leading to an increase in probability of the 

neighbor intervals. Even if that aspect showed to be acceptable with regard to the study above, it 

might, nevertheless, not be acceptable when taking into account the consequences on the joint 

distribution. To meet this challenge, the author suggests either an increase of the number of intervals 

or a shift of the relevant bandwidth upwards or downwards the probability distribution to let the mode 
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become the midpoint of the mode interval. When selecting a bandwidth between fractile 0.005 and 

0.995 as relevant bandwidth, then the shifted new relevant bandwidth will still not exceed the critical 

lower fractile of 0.025 or undercut the critical upper fractile 0.995. The input- and output-values for the 

shifted solution are given in appendix 2 to 4 for the three CGF probability distributions developed in 

section 2. 

4 How to interpret the joint CDF’s not-defined areas? 
Assume that for three WBS elements the costs have been estimated, representing the most likely 

costs. Due to uncertain future circumstances, the cost variance of each WBS element has been 

assessed to follow a different lognormal probability distribution. The situation for WBS element 1 is 

that of a minimum uncertainty (representing e. g. a known technology and a low complexity), for WBS 

element 2 that of a medium uncertainty, and for WBS element 3 that of a maximum uncertainty.  

The lognormal PDFs presented in section 2 are applied. In order to come to a sufficiently accurate 

estimate, the practical approach of discretizing the PDFs and of calculating the joint distribution with 

the help of a risk management software is chosen. As planned costs were determined for WBS 

element 1: Currency Units [CU] 2000, for element 2: CU 500, for element 3: CU 1000. The relevant 

bandwidth is seen as laying between the minimum (0.75 the planned costs) and fractile 0.999 for each 

CGF probability distribution.  

The decider aims at an identical interval width per probability distribution for ease of interpretation: 

then, the cost share of each WBS element within the joint distribution interval is identical.4 He or she 

chooses an interval width of 90.48 CU in order to reach more than five intervals in the PDF with lowest 

bandwidth (WBS element 2) between minimum and fractile 0.999 and, further, to come to an 

interpretable joint distribution interval width after an additive convolution (271.43 CU). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Cost probability distribution of the three elements regarded 

 

4 It should be mentioned that an identical interval width across all underlying PDFs drastically reduces 
the number of joint distribution data points, as then one data point results from a higher number of 
combinations. A second supporting condition is that the input values are calculated with eight decimal 
places. Both ways allow a full enumeration even if the calculated number combinations would 
theoretically exceed the processing capacity. In the example presented, the number combinations is 
(17*7*18) 2142. However, the joint distribution data points are 40. 
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Next, the chosen interval width is cross-checked for the resulting number of intervals for the other two 

WBS elements (17 for WBS element 1 and 18 for WBS element 3) with regard to the data processing 

capacity of the software deployed.5  

A challenge arises for WBS element 3: the true mode (CU 1000) comes to lay slightly apart the 

midpoint of the mode interval (CU 974.66) is resolved by shifting the relevant bandwidth to the left, 

which leads to a negligible reduction of the upper limit (the PDF is truncated at fractile 0.997). Figure 7 

shows the PDFs of the WBS elements’ cost variances. 

Cost variances are seen as independent of each other. The additive convolution is done with the risk 

management software DPL 9 of Syncopation Software. Figure 8 shows the software output of the 

cumulative density function (CDF). The value of CU 4042.92 represents VaR80 and an interval (the 

sum of all lower respective of all upper bounds of the PDF intervals integrated) between CU 3907.21 

and CU 4178.64. The (point) estimates are for expected value: CU 3759.85, for VaR50: CU 3771.50, 

and for the most likely costs: CU 3681.02. 

 

 

 

 

 

 

 

 

 

 

Figure 8: Joint cumulative density function 

 

A challenge arises out of the fact that, mathematically, the distance between the joint distribution data 

points is a not-defined area. If a decider wishes to come to a closer solution, he or she can take into 

account that in the case of a single discretized PDF the cumulative probability of an interval midpoint 

represents the sum of the probabilities of the class members. This means, the right bound of each 

convoluted PDF interval gives the true cumulative probability and not the interval midpoint. 

Then, given continuous PDFs which are discretized and, further, given an additive convolution, the 

assumption can be made that this holds for the joint distribution interval as well because of its equal 

interval width in cases of an additive convolution. Therefore, it seems appropriate to interpolate the 

right bounds of the joint intervals. In the example presented here, the width of each joint distribution 

interval is CU 90.48. The value of CU 4088.16 then represents the VaR80 (Figure 9). It is right to the 

midpoint (CU 4042,92). Its interval (based on the sum of all lower respective of all upper bounds of the 

PDF intervals integrated) covers the values between CU 3907.21 and CU 4178.64. 

 

5 The number of computable combinations is bounded in the case of a full enumeration. The number 
depends on the resulting number of the joint distribution data points (between 750 and 1000). 
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Figure 9: Cumulative probability of interval midpoints and of the joint interval right bounds 

5 Lessons learned when working with risk management 
software 

1. Test the maximum number of combinations that a risk management software can calculate if 

you plan to deploy a full enumeration of all combinations (preferable). 

2. Choose equal interval widths per PDF. Otherwise, the probability of each data point is not 

comparable: The probability of an interval depends on the number of the class members (data 

points), which are condensed into one interval. 

3. Start the decision process on the number of intervals by looking at the resulting interval width 

of the joint distribution data points: Probabilistic project costing represents a situation of an 

additive convolution. Therefore, a joint distribution data point represents the midpoint of an 

interval that is bounded by the sum of all lower respective of all upper bounds of the PDF 

intervals integrated. 

4. Choose an identical interval width for each PDF: Then (a) the cost variance for each WBS 

element is of identical importance within the joint distribution interval and (b) the number of 

joint data points decreases drastically. 

5. Make the midpoint of the discretized mode interval get close to the true mode of the PDF by 

shifting the relevant bandwidth: The midpoint of the mode interval influences the resulting joint 

distribution more than other data points. 

6. In the case of the lognormal CGF distributions presented: the minimum number of equal width 

intervals is seven if truncated between fractile 0.005 and 0.995 or fractile 0.025 and fractile 

0.975. 
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7. Interpret the joint CDF of additively convoluted PDFs as follows: Assess the distance of the 

joint distribution data points and shift the CDF half the distance to the right. The CDF data 

point given at each interval’s right bound indicates the true CDF, and a linear interpolation 

between these points approximates the true curvature of the joint CDF. 
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Appendix 1: Goodness of fit 
 

Low uncertainty, truncated between fractile 

0.005 and fractile 0.995  

TVD (normalized, 

per data point) 

KD (interval 

midpoint) 

PEM (interval 

midpoint) 

P99 9 intervals 0.0568 0.1044 -0.0010 

P99 7 intervals 0.0708 0.1390 -0.0006 

P99 5 intervals 0.0992 0.2015 -0.0005     

Low uncertainty, truncated between fractile 

0.025 and fractile 0.975  

TVD (normalized, 

per data point) 

KD (interval 

midpoint) 

PEM (interval 

midpoint) 

P95 9 intervals 0.0666 0.0887 -0.0024 

P95 7 intervals 0.0767 0.1092 -0.0030 

P95 5 intervals 0.0924 0.1523 -0.0031     

Medium uncertainty, truncated between 

fractile 0.005 and fractile 0.995  

TVD (normalized, 

per data point) 

KD (interval 

midpoint) 

PEM (interval 

midpoint) 

P99 9 intervals 0.0500 0.1087 -0.0020 

P99 7 intervals 0.0620 0.1476 -0.0013 

P99 5 intervals 0.0879 0.1830 -0.0002     

Medium uncertainty, truncated between 

fractile 0.025 and fractile 0.975  

TVD (normalized, 

per data point) 

KD (interval 

midpoint) 

PEM (interval 

midpoint) 

P95 9 intervals 0.0634 0.0847 -0.0079 

P95 7 intervals 0.0703 0.1108 -0.0078 

P95 5 intervals 0.0859 0.1570 -0.0070     
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High uncertainty, truncated between fractile 

0.005 and fractile 0.995  

TVD (normalized, 

per data point) 

KD (interval 

midpoint) 

PEM (interval 

midpoint) 

P99 9 intervals 0.0471 0.1220 -0.0023 

P99 7 intervals 0.0604 0.1480 -0.0013 

P99 5 intervals 0.0844 0.2165 0.0013     

High uncertainty, truncated between fractile 

0.025 and fractile 0.975  

TVD (normalized, 

per data point) 

KD (interval 

midpoint) 

PEM (interval 

midpoint) 

P95 9 intervals 0.0613 0.0882 -0.0107 

P95 7 intervals 0.0689 0.1168 -0.0103 

P95 5 intervals 0.0808 0.1539 -0.0081 

 

Appendix 2: Low uncertainty – CGF data points 
 

CGF (interval 

midpoint) 

p(interval) 

  

CGF (interval 

midpoint) 

p(interval) 

Lower limit 0.753303571429 

  

Lower limit 0.810625000000 

 

Interval1 0.809071428571 0.083292 

 

Interval1 0.777250000000 0.037401 

Interval2 0.904535714286 0.217604 

 

Interval2 0.851500000000 0.109998 

Interval3 1.000000000000 0.281188 

 

Interval3 0.925750000000 0.189059 

Interval4 1.095464285714 0.230165 

 

Interval4 1.000000000000 0.222305 

Interval5 1.190928571429 0.122039 

 

Interval5 1.074250000000 0.192510 

Interval6 1.286392857143 0.050211 

 

Interval6 1.148500000000 0.130033 

Interval7 1.381857142857 0.015501 

 

Interval7 1.222750000000 0.071682 

Upper limit 1.429589285714 

  

Interval8 1.297000000000 0.033432   

 

 

Interval9 1.371250000000 0.013580     

Upper limit 1.408375000000 
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Appendix 3: Medium uncertainty – CGF data points 
 

CGF (interval 

midpoint) 

p(interval) 

  

CGF (interval 

midpoint) 

p(interval) 

Lower limit 0.776285715286 

  

Lower limit 0.827125000000 

 

Interval1 0.852464285714 0.219510 

 

Interval1 0.775000000000 0.085396 

Interval2 1.000000000000 0.298819 

 

Interval2 0.887500000000 0.188992 

Interval3 1.147535714286 0.239881 

 

Interval3 1.000000000000 0.223481 

Interval4 1.295071428571 0.141960 

 

Interval4 1.112500000000 0.197148 

Interval5 1.442607142857 0.065352 

 

Interval5 1.225000000000 0.140418 

Interval6 1.590142857143 0.025373 

 

Interval6 1.337500000000 0.085343 

Interval7 1.737678571429 0.009105 

 

Interval7 1.450000000000 0.046052 

Upper limit 1.811446428571 

  

Interval8 1.562500000000 0.022711   

 

 

Interval9 1.675000000000 0.010459     

Upper limit 1.731250000000 

 

 

Appendix 4: High uncertainty – CGF data points 
 

CGF (interval 

midpoint) 

p(interval) 

  

CGF (interval 

midpoint) 

p(interval) 

Lower limit 0.898428572429 

  

Lower limit 0.763000001000 

 

Interval1 0.799750000000 0.181309 

 

Interval1 0.844750000000 0.200893 

Interval2 1.000000000000 0.308178 

 

Interval2 1.000000000000 0.244716 

Interval3 1.200250000000 0.249875 

 

Interval3 1.155250000000 0.214116 

Interval4 1.400500000000 0.146877 

 

Interval4 1.310500000000 0.151043 

Interval5 1.600750000000 0.071080 

 

Interval5 1.465750000000 0.092272 

Interval6 1.801000000000 0.030515 

 

Interval6 1.621000000000 0.051115 

Interval7 2.001250000000 0.012166 

 

Interval7 1.776250000000 0.026476 

Upper limit 2.101375000000 

  

Interval8 1.931500000000 0.013094   

 

 

Interval9 2.086750000000 0.006275     

Upper limit 2.164375000000 
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