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Abstract 

The growing popularity of Joint Cost & Schedule Analysis has highlighted the need for quality 

Schedule Risk Assessments (SRAs). Modeling schedule risk and uncertainty requires an 

understanding of the behavior of schedule networks. Network Analytics (NA) has been furthered 

in recent years due to research in fields such as social networks, IT networks, and transportation 

networks. Key aspects of these advancements can be used in SRAs to improve our understanding 

of schedule risk and mature our modeling techniques. This paper integrates classical concerns in 

schedule analytics, principally Merge Bias, with NA processes, such as node centrality measures 

and edge properties, to uniquely identify fragile tasks and illustrate how delays in these tasks 

cascade through a schedule and ultimately affect program execution.  

Section 1: Introduction 

Mature standards and best practices exist to monitor and enforce adequate contract execution 

for the Department of Defense (DoD). Earned value management (EVM), for example, seeks to 

accomplish the technical scope of a project, subject to minimizing schedule delays and cost 

overruns, by creating an integrated baseline of program planning and performance (Alexander, 

2002). Despite these best practices, the acquisition process occasionally fails, as evidenced by 

programs incurring Nunn-McCurdy breaches that necessitate a re-baseline or, worse yet, 

program cancellation. Johnson (2018) asserts that schedule delays and cost growth are the norm 

for acquisition programs rather than the exception. As one empirical example, the Government 

Accountability Office (GAO) reported that 98 major development acquisition programs 

(MDAPs) cumulatively overran their budget baseline by $402 billion and were an average of 22 

months delayed in their schedules in 2010 (Hofbauer et al., 2011: 3). Industry seems to be 

experiencing similar challenges with nearly 90% of large construction projects overrunning 

(Santolini et al., 2021: 1). 

As a result, research is being conducted to further our understanding of the various program 

management tools and to improve our techniques. One tool that has experienced a level of 

success is Joint Cost/Schedule Analysis. This technique attempts to combine Cost Risk Analysis 

with Schedule Risk Analysis (SRA) in order to identify a Joint Confidence Level (JCL). While 

JCL has experienced a level of success, our understanding of schedule risk is still in its infancy. 

As such, we have a great deal to learn about schedule variability and how task delays materialize 

and propagate through a schedule. This paper attempts to further our understanding of schedule 

risk and uncertainty by adapting techniques developed in Network Analysis and other academic 

research to a DoD MDAP program schedule to assess the applicability of these techniques in a 

DoD environment. 
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An immediate problem that confronts schedule risk analysis is that, in some respects, 

programs seem to perform well compared to their baseline. Figure 1, below, illustrates the 

distribution of task performance relative to its baseline. This histogram represents performance 

of a typical team on the DoD MDAP program. It will be noticed that there is a significant peak at 

1.0 (Actual Duration = Baseline Duration) with many tasks coming in with a ratio less than 1 

(Actual Duration < Baseline Duration). This performance seems to be prevalent in other DoD 

programs as well. 

 
Figure 1: Duration Variance Distribution 

With an actual duration less than or equal to the baselined duration in the vast majority of 

tasks, why is it that programs consistently slip their schedules? There are, perhaps, many 

explanations for this phenomenon, but it seems that there are three primary candidates: One, data 

is reported improperly and tasks are marked as being completed when, in reality, they have not. 

As a result, slips (delays) are being realized, but not reported until it is too late to mitigate. While 

this explanation may be correct, we have little ability to test the theory and, therefore, it will not 

be addressed in this paper. 

The second possibility is that program teams are overly optimistic during the baselining 

processes. It seems likely that excessive optimism about execution and/or program requirements, 

leads to missed scope that must be added to the program after it has already been baselined. 

Baseline Change Requests (BCR) are the mechanism used to manage the added complexities and 

derived requirements. BCRs frequently result in additional tasks and logic being incorporated 

into the schedule. Generally, the BCR process considers only the expected task durations which 

leads to the conclusion that the added tasks and logic can be incorporated without materially 

affecting the milestone of interest. Because the analysis does not account for the associated 

uncertainty, the baseline changes may show little-to-no change to the milestone while the 
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probability of achieving said milestone has dramatically decreased. While this explanation seems 

likely and is a good candidate for further research, we will not pursue it in this paper. 

 

A third explanation, and the one that will be pursued in this paper, focuses on the 

complexities of schedule networks. Academic and industry experts have conducted root cause 

analysis to understand why project management, in general, is repeatedly unable to ensure timely 

and financially affordable results. System complexity is often cited as a reason. Geraldi et al. 

(2011) executed a systematic review of the project complexity literature. The speed of execution, 

misaligned incentives from organizational hierarchy, and dynamic changes in personnel or 

system requirements are three commonly observed reasons, but they are not the number one 

reason. Structural complexity, in fact, was identified as the most significant cause of project 

execution issues, with large project size, task variety, and high interdependencies noted as 

evidence (Geraldi et al., 2011, pp. 976-977).  

Current schedule estimation methods often generate a critical path and use the idea of free 

schedule float, which is the amount of time a task can delay before successor tasks are 

subsequently delayed, to estimate if a delay will occur. This type of analysis treats the delay 

relationship between predecessors and successors linearly. However, interdependencies and task 

uniqueness may impose nonlinear relationships, where a delay in a predecessor task could lead to 

larger delays in successor tasks.  

This non-linear growth in a delay is also referred to as the cascading effects of a delay. 

Ellinas et al. (2023: 4) evaluated a multi-billion-dollar infrastructure project with more than 

65,000 tasks and found that using the free float method underestimated the probability of a delay 

propagating and cascading from predecessors to successors. Similarly, Vazquez et al. (2023) 

postulate that the focus on a critical path narrows the focus to an increasingly small number of 

tasks as modern-day projects grow in complexity and does not address how project complexity 

impacts the critical path. The authors model the schedule as a complex network to show that the 

relative size of a notional project’s critical path shrinks as the network increases in size.  

Given the strong evidence that schedule complexity can exasperate delays as they cascade 

through a schedule network, it was determined that we need to understand if and how these 

patterns manifest in DoD programs and the extent to which the programs are affected. 

Specifically, what tasks should leadership be most concerned with, and can we identify those 

tasks by their potential to yield a catastrophic cascade? Ultimately, the question “boils down to” 

1) which tasks are most likely to slip and 2) which tasks are most likely to cause a catastrophic 

failure to the schedule. During the literature review process, we began to refer to these tasks as 

“Fragile Tasks.” In the following sections we define several NA metrics (section 2) and then 

discuss their application to schedule analytics (sections 3-5). 
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Section 2: Network Analysis (NA) 

Section 2.1: NA Applications to Project Schedules 

Networking and graphing analytic techniques may enable the acquisition community to 

explore today’s highly complex schedules so that programs can more effectively monitor and 

enforce contractor’s schedule performance. Graphs and networks are mathematical structures 

used to model relationships between objects, represented in the form of nodes and the edges that 

join and connect pairs of nodes. Node relationship types include cycles and feedback loops, the 

direction of a property relationship, and relationship strength. Networks may be either cyclic or 

acyclic and either directed or undirected. The relationships among the nodes can further be 

defined by weighting the strength between two nodes or directing property relationships among 

the nodes. As an example, the Internet is a weighted undirected graph with routers and hosts as 

nodes. Graph edges represent the volume of connections, such as using fiber cables (strong) 

versus WIFI (lighter) that connect the nodes together (Brandes and Erlebach, 2005, p. 8). 

Many real-world structures and relationships can be modeled using the foundations of 

network analytics (Jacob et al., 2017). As a result, graphs provide a versatile framework for 

analyzing complex systems and relationships across a large number of academic and industry 

fields, such as computer science, biology, epidemiology, social sciences, and operations 

research. As an example, this analysis is used in the social sciences to identify corporate 

relationships that maximize profitability and the construction of social structures in education 

that maximize a person’s creativity.  

 Similarly, large project schedules, such as DoD MDAPs, may be treated as a network. 

Project tasks and their dependencies can be modeled as a directed graph, where edges have 

directions specifying property relationships, such as the order of tasks, completion dependencies, 

and parent and child relationships. Such a data model facilitates the application of a large set of 

tools to examine characteristics of the project, such as project execution within a portion of the 

weapon system (e.g., specific work breakdown structure efforts), within a subgraph (e.g., a 

project milestone), or within the global network (e.g., the complete network of project tasks).  

Recent graph and network analytic efforts, in fact, have emerged as powerful tools to 

diagnose and forecast schedule risks for large-scale engineering and construction projects 

(Santolini et al., 2021; Pozzana et al., 2021; Ellinas et al., 2023; Vazquez et al., 2023). These 

methodologies enable the examination of complex interdependencies among various project 

activities, providing a detailed understanding of how different components work together or 

influence each other. By representing projects as networks of singular or connected entities, 

analysts can identify critical nodes and paths that significantly impact the project's acquisition 

health. This approach is essential for understanding the propagation of risks, delays, and cost 

overruns within a project, which can have substantial financial and schedule implications. 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



5 | P a g e  

 

Graph and network analysis may offer several specific analytic advantages relative to other 

methodological approaches. These techniques enable visual observations of the intricate 

relationships among different nodes. As a social network example, a node’s location in a network 

serves a significant role in the node’s outcome by defining the node’s opportunities and 

constraints (Borgatti et al., 2009, p. 894). This capability may be useful for project schedule 

assessments as well. Network diagrams can illustrate how various tasks are linked, highlighting 

potential bottlenecks or critical paths that may affect the project's overall timeline and budget. By 

analyzing these connections, project managers can make informed decisions on resource 

allocation, scheduling adjustments, and contingency planning, ultimately leading to more 

efficient and cost-effective project execution. 

Moreover, quantitative measurements potentially provide unique insights into the value of 

specific nodes within the network. The most prominent investigation at the node level is the 

concept of centrality, which is a “family of node-level properties relating to the structural 

importance or prominence in the network” (Borgatti et al., 2009, p. 894). Centrality measures are 

often used to identify critical nodes, such as key influencers on social media platforms. In terms 

of acquisition scheduling, centrality measures can help identify critical tasks within the project 

network. These nodes, often representing key activities or milestones, can have a 

disproportionate impact on the project's cost or schedule outcomes. By analyzing the network 

structure, project managers can prioritize these critical nodes, ensuring that sufficient resources 

and attention are allocated to them. This prioritization may help mitigate risks and avoid costly 

delays or overruns that could negatively affect the project's performance (Pozzana, 2021). 

Importantly, network analysis may help overcome existing EVM limitations. The application 

of network analytics in acquisition scheduling may allow for a more holistic view of project risks 

and opportunities. As stated above, traditional schedule analysis methods often assess cost and 

schedule risk linearly. In addition, standard methods often focus on individual elements of a 

project, such as cost estimates or timelines for specific tasks. On the contrary, network analytics 

considers the project as an interconnected system, enabling the identification of 

interdependencies. These cascaded dependencies can create a cumulative effect where issues in 

one part of the project can ripple and surge through the entire network.  

A comprehensive, unified perspective is particularly valuable in large-scale projects where 

the complexity and interdependencies of tasks make it challenging to predict outcomes based on 

isolated factors. The graph and network analytics also facilitate scenario analysis and stress 

testing in DoD project planning. By simulating different scenarios and their potential impacts on 

the network, analysts can assess the project's resilience to various risks and uncertainties. This 

approach allows for the development of robust acquisition plans that account for a range of 

possible outcomes, enhancing the project's ability to withstand unexpected challenges and 

changes in the external environment. The next section discusses the adapted methodology that is 

applied to a contractor’s integrated master schedule (IMS) for a DoD MDAP. 
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Section 2.2: NA Methodological Approach 

This study primarily uses the methodological approaches from Pozzana et al. (2021) and 

Santolini et al. (2021) to explore real-world, completed projects as complex3 networks and 

identify the project characteristics that cause the most significant schedule risks and issues. Both 

papers emphasize the potential for a delay in an activity to manifest in larger schedule deviations 

as a project continues. A dynamic, complex network can lead to “spreading,” where a localized 

schedule issue on a single activity disrupts the entire project’s schedule performance (Pozzana et 

al., 2021, p. 2). Santolini et al. (2021, p. 3), likewise, focus on how small, isolated task delays 

can lead to large scale project wide delays because they “cascade” across the schedule network.  

These papers attempt to statistically measure the relationship between activity perturbations, 

which are deviations between actual and planned events, and a few centrality measures, which 

help identify tasks of interest. This study defines perturbations as delays and assesses several 

types, which include start delay, finish delay, and duration delay. The centrality measurements 

incorporated in the papers and this study, are node reachability and node degree. Node reach is 

generally defined as the number of nodes (e.g., successor tasks) reachable downstream for a 

given task. Pozzana et al. (2021, pp. 6-7) created a reachability – heterogeneity (RH) measure to 

test a hypothesis that the combination of a task’s reach and the complexity of a project leads to 

elevated network fragility and schedule risk4. This study replicates the RH metric and adopts it as 

a measure of reach.  

Node degree is a second type of centrality measure pertinent to schedule risk evaluation. 

Node degree is measured by the number of nodes that can be reached from the reference node 

(Jacob et al., 2017). In acquisition efforts, tasks with significant dependencies are commonly 

cited as a source of schedule risk.  Network Analysis further stratifies the definition of degree to 

include In-degree and Out-degree.  

• In-degree is defined as the number of nodes that directly feed into the node of interest. In 

schedule analytics, these are known as direct predecessors. A task with a high in-degree has 

many direct predecessors, and, therefore, a greater possibility of incurring a delay. 

• Out-degree is defined as the number of nodes that directly follow the task of interest. In 

schedule analytics, these tasks are known as direct successors. So, a task with high out-

degree has lots of successors and, therefore, greater opportunity to propagate a delay.  

While not a focal point of the study, additional network centrality measures may help score the 

importance of a node, so they are included in forecasting future task fragility.  Examples include: 

(1.) Betweenness centrality, which measures a node's importance in a network based on its 

                                                 
3 The academic community refers to a network as complex when it contains a large spectrum of nodes with 

irregularities in the number of edges that connect the nodes, while a non-complex network possesses nodes that 

mostly possess the same number of edges, thereby visually representing a lattice structure (Jacob 2017: 1-2).  
4 The RH metric is a modified heterogeneity measure (Estrada 2010), which seeks to measure the complexity as the 

uniqueness in the number of node degrees and structure of the network (e.g., schedule for our purposes). The RH 

metric compares the overall quantity of predecessors and successors for all tasks across the entire schedule against 

the same measure, but with a specific node and its lineage of predecessors and successors removed. 
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presence on the shortest paths between other nodes; (2.) Closeness centrality quantifies how 

close a node is to all other nodes in a network based on the average length of the shortest paths; 

and (3.) PageRank algorithm, which is used to rank nodes by assessing their importance through 

the quantity and quality of links to them. 

The centrality measures of interest share similarities with project scheduling concepts. In-

degree is particularly important in schedule analytics because, under the right circumstances, a 

high in-degree is almost certain to result in a task slip. This concept is commonly known as 

Merge Bias. The following section discusses the merge bias concept and how the properties of 

tasks possessing this bias are typically analyzed.  

Section 3: Merge Bias  

To answer the question which tasks are most likely to slip, we turn to a topic that is not 

terribly new to schedule analytics – Merge Bias. Merge Bias occurs when a task or milestone has 

a high in-degree. In scheduling terminology, merge bias occurs when a task or milestone has 

many direct predecessors. Under certain circumstances these predecessors almost certainly yield 

a schedule slip to the successor task, or milestone, and virtually ensures that it occurs on its worst 

possible date.  

Section 3.1: Simple Illustration 

To illustrate this phenomenon, consider a common situation where a milestone can only be 

completed once all of its predecessors have been completed. These are known as Finish-to-Start 

relationships and can be illustrated by a test that cannot occur until all the component hardware 

has been delivered, or a Critical Design Review that cannot take place until the system design 

has been completely documented.  

Let’s pursue the example of a test and relate it to the tossing of a fair coin. Tossing a single 

coin might be analogous to a situation where only one prototype needs to be available before the 

test can be conducted. For this illustration let’s consider that a “Head” represents delivering the 

prototype on-or-ahead of schedule and a “Tail” to represent a late delivery and thus a slip to the 

testing schedule. In this situation, we would consider that the probability of successfully meeting 

the testing milestone is 50 percent.  

If, however, we require that two, prototypes be present for the test and that the delivery of 

both components are independent and scheduled for the same day. The probability that the test is 

completed on time is reduced to 25 percent. The analogy to the flipping of coins is quite simple 

since we have two coins and there are four, possible outcomes to the flipping of the coins. The 

result could be two heads (both prototypes are delivered on time), a head and a tail (prototype 1 

is delivered on time and prototype 2 is delivered late), a tail and a head (prototype 1 is delivered 

late and a prototype 2 is delivered on time) or two tails (both prototypes are delivered late). 

Again, since a head represents on-time delivery and tail represents late delivery and both 

components must be received prior to execution of the test, only one of the four outcomes yields 
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on-time testing (head for coin one and another head for coin two). Thus, the probability of 

successfully completing the test on time reduces to 25 percent. 

Without pursuing the mathematics (since that is not the purpose of this paper), it is known 

that as the number of independent components increases the probability of on-time delivery of 

every component decreases and the probability of a delay to the test also decreases. Because all 

of the deliveries are planned for the same date, the efforts to design and build them converges (or 

merge) to the test activity and practically ensure a slip to the test (or are biased toward a slip).  

Section 3.2: Application to Project Schedules 

In an SRA, a task duration has a probability distribution associated with it. In our example, 

the design/build process has a start date and a duration. The finish date, or delivery date, can be 

calculated as the start date plus the duration. So, while we may think this process takes, for 

example, 60 days, we accept that it could possibly take as few as 50 days or take as long as 100 

days. The distribution of delivery dates, then can be calculated as illustrated in the cumulative 

distribution function, or S-Curve, in Figure 2, below.  

 
Figure 2: Milestone S-Curve with 1 “In-Kind” Predecessors 

In this example, testing occurs as soon as the prototype is delivered. Therefore, the 

distribution of the testing milestone mirrors the distribution of prototype delivery. Here the 

baseline schedule has a 60 percent probability of on time execution.  

If we add a second prototype that shares the same delivery schedule as the first but who’s 

delivery is independent, then the distribution of the testing milestone changes – as illustrated in 

Figure 3 – and the probability of on-time test execution reduces to less than 40 percent. So, while 

the probably of on-time delivery for each individual prototype is 60 percent, the probability that 
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they both are delivered on time – and thus that testing occurs on time – reduces by nearly 20 

percentage points. 

 
Figure 3: Milestone S-Curve with 2 “In-Kind” Predecessors 

Figure 4, illustrates the effect of five prototypes. Again, each component has the same 

delivery date with a 60 percent probability of on-time delivery. In this case the probability of 

conducting the test on time, decreases to less than 10 percent. 

 
Figure 4: Milestone S-Curve with 5 “In-Kind” Predecessors 
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Finally, as illustrated in Figure 5, with only 15 predecessors the probability of on-time testing 

reduces to practically zero. 

 
Figure 5: Milestone S-Curve with 15 “In-Kind” Predecessors 

 

Section 4: Methodological Execution and Results 

A few details about the data sources and analytic environment are warranted before 

describing how the study team employed this methodological approach to a DoD MDAP. The 

primary data source is Integrated Program Management Data Analysis Report (IPMDAR), which 

is a monthly electronic data deliverable of cost and schedule performance provided by the 

contractor. The two main data sets provided in each report are the contract performance dataset 

(CPD), which includes earned value and budget baseline data, and the schedule performance 

dataset (SPD), which contains current information regarding the contractor’s IMS. This research 

predominantly used the Tasks, Task Schedule Data, and Task Relationships tables in the SPD.  

The study team executed the analysis in SQL and Python based environments. Specifically, 

the team utilized SQL, Pandas and NumPy to support data frame structures, data preprocessing, 

and normalization. We implemented igraph to represent schedules as network graphs, assess 

those networks, and generate visualizations. Plotly was also used in conjunction with igraph to 

provide more interactive visualizations. Lastly, we used SciPy for statistical testing, such as 

Spearman correlation. 

Section 4.1: Merge Bias Execution and Results 

As described in earlier sections, for merge bias to be meaningful some conditions must be 

met. These conditions include: 
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1. Multiple schedule paths must converge on a single task/milestone.  

2. The tasks must have a “Finish-to-Start” relationship with the task/milestone of interest.  

3. The baseline finish date for all predecessors must be roughly the same.  

4. And any lag between the predecessor tasks and the milestone must be minimal. 

For the MDAP program, approximately 397 tasks were found to have predecessors that meet 

the criteria for merge bias. 

Figure 6, below, plots the number of predecessors against the Days of slip. It may be noted 

that with only one predecessor there are a number of tasks that slipped as well as a number that 

came in on-time. However, of the tasks with between two and ten predecessors, very few came 

in on-time. It will also be noted that there are very few tasks that meet the criteria and have more 

than 15 predecessors. With a sample size that is so small, it’s difficult to make a definitive 

statement about the effect of the number of predecessors on the on-time execution of the task-on-

interest. 

 
Figure 6: Number of Predecessors vs Days of Slip 

 

Section 4.2: Network Analysis Execution and Results 

The approach executed by Santolini et al. (2021) and Pozzana et al. (2021) served as the 

basis for this study; however, several modifications were necessary due to the constraints 

encountered by the research team. The primary constraint is data accessibility. Santolini et al. 

(2021) conducted their exploratory and explanatory analysis on approximately 15 large scale 

construction and engineering projects. On the contrary, the study team has access to one MDAP 

project schedule. Moreover, the project is less than 50% complete, which limits the extent and 

significance of the explanatory analysis. An ongoing project entails fewer completed tasks and 
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thereby limits the ability to statistically evaluate whether certain task characteristics led to 

cascading failures in the project.  

Therefore, the study team examined whether the major milestone activities within the overall 

MDAP project were representative of a complex directed acyclic graph (DAG) with individual 

tasks that could be fragile to cascading failures. The MDAP project adheres to rolling wave 

planning, where tasks are defined for a limited number of future time periods in order to 

accommodate planning uncertainty. The study team examined activities designated as sub-

milestones, which are the next immediate children to major milestones within the current 

planning horizon, as a mitigation to incomplete future schedule planning.  

In total, the IMS includes 12 major milestones, and 13,000 sub-milestones. The study team 

focused on one major milestone with approximately 5,500 tasks and 2,250 sub-milestones. The 

evaluation of sub-milestones introduced the possibility of task interdependency among the sub-

milestones as an unintended consequence. A lack of independence could bias the centrality 

measurement of high-risk tasks upward. Thus, a correlation matrix of tasks among sub-

milestones was executed, which found a near zero relationship of tasks among the sub-

milestones. The tasks across the sub-milestones are consequently assumed to be independent, 

which allowed for the methodological execution to proceed.  

Next, the study team conducted an exploratory analysis to confirm that the sub-milestone 

networks possessed properties of a relatively complex network with potentially fragile tasks. 

Santolini et al. (2021) measures were adopted in this analysis and their valuations served as a 

benchmark for determining the network complexity. The sub-milestones task count varies 

considerably, ranging between 1 predecessor task and roughly 725 predecessor tasks. Smaller 

node (e.g., task) counts are less likely to possess characteristics of a network where delays could 

propagate across the schedule network, so sub-milestones with a predecessor count less than or 

equal to 25 tasks are excluded from the analysis, leaving less than 750 sub-milestones. Another 

constraint with the study’s MDAP IMS pertains to the overall length of sub-milestone networks. 

The global structure of the sample networks (e.g., project sub-milestones) possesses network 

diameters (e.g., the longest path of successive tasks) ranging between 5 and 54 activities, while 

Santolini et al. (2021: 3) size ranges between 31 and 191 activities. Longer diameters are 

associated with a greater likelihood of complexity; however, approximately 35% of the sub-

milestones fell within the exemplar paper’s range and no other data was available, so the study 

deemed the diameters an acceptable limitation. 

 For the remaining network complexity metrics (density, cycling, clustering, spreading 

distance, and cascade size), the measurements are comparable to the previous related work 

Santolini et al. (2021). A brief discussion follows for each:  

• The density5 of the sub-milestones ranges between 0.003622 and 0.07381, which exhibits 

characteristics of a sparse network, similar to Santolini (page 3). 

• The number of cycles for each remaining sub-milestone was calculated by computing the 

relations among each task in each network to ensure a linear rather than circuitous 

                                                 
5 The ratio between the total number of sub-milestones edges and the total edges in the network. 
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relationship. All sub-graphs possessed zero cycling, which ensures that the schedules are 

directed and acyclic.  

• Clustering is calculated as the number of completed tasks with a schedule delay and the 

percentage of their predecessor tasks that also have a delay.  The clustering calculations for 

the MDAP program align with Santolini (page 5). The findings suggest that predecessor tasks 

with a schedule delay are more likely to cascade into successors.  

• Spreading distance measures the correlation of the average schedule delay over varying 

distances for each task in the network. The schedules in this study, in fact, possess a positive 

correlation, which indicates that delays are propagating across multiple successors in the 

networks. This finding aligns with Santolini (pages 10-11). 

• According to Santolini (page 6), cascade size is calculated as the number of downstream 

nodes from an initial perturbation that also experienced a delay. Cascade size can be 

categorized by a perturbation in the Finish Dates, Start Dates, and Duration. 

o Finish Date Cascade: The study team finds (Figure 7) that for finish delay (i.e., a 

positive difference in actual and baseline finish dates), the impact of the initial delay 

declined after the first downstream task, with significant positive values up to six 

activities downstream, which is indicative of delay clustering in local neighborhoods. 

The correlation values then become analogous to those obtained when delays are 

randomly assigned to nodes within each network.  

o Start Date Cascade: We find similar patterns for start delay where the duration of the 

impact lasts for eight downstream activities (Figure 8).  

o Duration Cascade: Lastly, in accordance with Santolini et al. (2021), we find that 

correlation values related to duration delay closely follow a distribution with 

randomly dispersed delay (Figure 9). Thus, the cascades for start and finish delay 

resemble a distribution that departs from a simulated model with random task delay 

durations and is subject to compounding schedule issues. 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



14 | P a g e  

 

 
Figure 7: Cascading Failures Based on Finish Delay 

 

 
Figure 8: Cascading Failures Based on Start Delay 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



15 | P a g e  

 

 
Figure 9: Cascading Failures Based on Duration Delay 

The exploratory analysis verified that the MDAP milestone schedule hold complex network 

characteristics and that the centrality measures, node reach and node degree, are appropriate for 

examining the potential cascading impacts of fragile tasks. To conduct the formal analysis, we 

determined to employ cross-correlation and Spearman’s rank correlation.  

• A cross-correlation was executed between the aforementioned centrality measures and 

various measures of delay duration. Santolini et al. (2021, p. 7) used a delay rate, which is 

measured as the proportion of activities where the actual task duration exceeded the baseline 

task duration. Schedule analysts for DoD acquisition programs, however, are typically more 

interested in potential time delay of a project overall, than the number of tasks that were 

delayed. A project, for example, may experience a 75% delay rate, but only finish a few days 

behind schedule. Similarly, a project may have a 10% delay rate, but the 10% of the tasks 

that slipped were at high risk of delay propagation, leading to a significant duration overrun. 

Therefore, the study team used start delay and finish delay as schedule setback measures. 

• The Spearman’s rank correlation coefficient, which is a nonparametric measurement, was 

executed due to the non-normality of the data. Coefficients were calculated for 

approximately 25 of the network representatives, completed sub-milestones (Table 1). The 

results in the table are ordered by the severity of schedule slip as measured by finish delay 

from least to greatest delay. The left three columns are for the model with real data, while the 

right three columns represent a null model where task delays are randomly assigned via a 

simulation with a uniform distribution. While the null model correlation results are near zero 

and do not possess a pattern, the model with real data possesses larger values with patterns.  
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Table 1: Correlation of Finish Delay and Centrality Measurements 

 

The RH metric is increasingly negatively correlated with finish delay. These results are the 

opposite of the Santolini et al. (2021) observations, as their reachability metric was positively 

associated with schedule delay. Here, the lower network diameters for the sub-milestones 

relative to the exemplar study may explain these results. The longest diameter, which is the 

longest path, for the MDAP IMS sub-milestone networks is approximately 50 tasks, while the 

minimum longest path for Santolini et al. (2021) is roughly 30 tasks. If the MDAP had more 

completed milestones, the node reach directionality and significance may change.  

Similarly, the results for the relationship between node degree and schedule delays are 

inconsistent for the two efforts. Santolini et al. (2021) did not find a clear pattern; however, node 

degree is increasingly and positively associated with finish delays in this case.  

The findings for node degree are important because they conform with our schedule analysis 

discussion earlier in this study. The existence of strong task convergence in a project, where 

multiple, parallel activities must be completed before a successor task may start, leads to 

increased merge bias. Merge points can include important program activities, like critical design 

reviews or the start of production (GAO 2015, pp. 100-102). High in-degree valuation is the 

networking equivalent of strong task convergence. The analysis conducted by this study team 
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corroborates the perils of merge bias because sub-milestones with higher in-degree (e.g., higher 

merge bias) are, in fact, associated with longer schedule delays.  

The networking analysis is ultimately used to forecast schedule risk given the positive and 

increasing correlation between degree and finish delay. The study team calculated centrality 

measures for future tasks that were in the 18-month planning time horizon. Though degree is the 

most statistically significant measure for the program, multiple centrality measures are estimated 

for completeness. The table below (Table 2) lists future sub-milestones ordered by an aggregate 

rank, which is based on the selected centrality measures and the average ranking of the task. The 

aggregate rank is defined as the combination of multiple rank indices via averaging. The rank 

indices are computed using all available measures, such as network properties, and centrality 

measures; specifically, in-degree, out-degree, PageRank, closeness, betweenness, and 

reachability metrics. The highest rankings are displayed at the top of the table. Simply put, the 

tasks are ordered in descending schedule risk.  

Table 2 – Future Sub-Milestone Fragility Forecasts 

 

In this case, the table displays the aggregate ranking based on in-degree and out-degree. 

Future Sub-Milestone 2, for example, possesses the second highest score based on the in-degree 

measure and the sixth highest score based on  the out-degree measure. Additional features can 

help inform the analyst when reviewing the networking forecasts. Data pertaining to whether the 

task is on the contractor’s critical path or the contractor’s driving path, both available in 

IPMDAR’s TaskScheduleData table (i.e., OnCriticalPath and OnDrivingPath), can be appended 

and displayed. Cost and schedule analysts may be particularly interested in high centrality 

ranking tasks that are also on the critical path because they are identified as significant risks 

along multiple margins. Likewise, high centrality ranking tasks that are not currently identified 
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as critical may warrant further investigation to determine if the task necessitates monitoring. 

Overall, the intent of the forecasts is to support the identification of potentially high-risk 

activities for the execution of root cause analyses so that preventive action may buy down the 

risk. 

Section 5: Discussion and Future Work 

The study team encountered several challenges and limitations while conducting this 

research effort, one of which is data availability. The analysis was conducted on a single, in-

progress project. Future efforts should seek to apply comparable cascading network methods to 

completed or near-finalized projects to independently verify that node degree, and possibly node 

reach, are associated with schedule fragility.  

The forecasts are also currently limited in both their analytic rigor and value. The 

methodological approach can identify future tasks that are potentially fragile based on their node 

degree values. However, the forecasts do not currently account for certain edge characteristics 

that are pertinent to EVM analysts. As an example, the type of task relationship, like start-to-start 

and finish-to-finish, is not accounted for because most tasks possess a finish-to-start relationship. 

Nonetheless, the added granularity could improve the forecast by modifying the strength of node 

relationships in the network.  

Perhaps of greater importance, the forecasts do not quantify what the potential impact of 

these fragile tasks are. In other words, the current method predicts the likelihood of a schedule 

risk, but does not capture the schedule consequences. Future research may adopt mature analytic 

approaches from other industries to improve upon these limitations, as demonstrated here with 

this schedule network analysis pathfinder. The financial industry, for example, has developed 

frameworks to stress test the resilience of the financial system (Amini et al. 2012). The DoD 

acquisition community may look to adapt these methods to examine how and if a shock, such as 

a time delay, to a fragile task causes a “contagion” across the entirety of a project (Levy-

Carciente 2015: 164). 

Despite the limitations, this effort is potentially groundbreaking because it applies emergent 

research on project schedule networking analysis to a real IMS for a DoD MDAP. In addition, 

the approach, adapted to an ongoing program at the sub-milestone level, replicates some of the 

existing research hypotheses, specifically the importance of node degree on task delays. 

Moreover, the analysis corroborates current project schedule postulates regarding merge biases. 

Tasks with a greater in-degree are leading to cascading failures for the completed portions of this 

MDAP’s IMS. The incorporation of both standard and adapted centrality measurements that 

correlate with schedule fragility may be readily used to investigate high cascade probability tasks 

on other MDAPs.  

Furthermore, this study modified several of Pozzana et al. (2021) and Santolini et al. (2021) 

exemplar analysis to accommodate the realities of DoD acquisition. In particular, the use of start 
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and finish delay rather than delay rate and duration delays may serve as more applicable 

variables of interest to the EVM community because they capture the manifestation of cascading 

delays, which can thwart DoD MDAP success. In addition, the analysis is executed using 

predominant tools and libraries in the Python language, which provides strong analytic rigor and 

high interoperability with many other computing tools through application program interfaces 

(APIs). Finally, this effort is a joint collaboration of multiple organizations, which culminated in 

substantial synergies across several sub-disciplines of expertise.  

In closing, information technology growth has led to an ever-increasing supply of digital 

data, otherwise known as the lifeblood of data sciences, for our costing community to request, 

collect, normalize, store, and report upon. The proliferation of data will likely continue to 

increase the complexity of acquisition integrated program baselines (IPBs) and IMSs. It is our 

hope that this effort incentivizes others researchers and practitioners to build-upon the 

networking analysis research conducted here, so that we can help programs to develop and field 

critical capabilities on time and at cost.  
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