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Abstract 
The modern space mission landscape requires consideration of numerous trade variables to deliver 

optimal mission performance at low cost. Academic methods exist to address such challenges, 

however, practical deployment of these methods to constellation mission design remains 

uncommon. 

This paper presents a practical space mission constellation architecture approach that employs 

proven statistical, data science, and machine learning techniques on the products of an integrated 

cost and engineering modeling framework. When deployed at the early stages of constellation 

development, this integrated modeling framework and analysis approach provides stakeholders 

insight into key design parameters that drive mission performance and cost sensitivity. 

Furthermore, it pinpoints promising design regions in large trade spaces that can be further 

examined and refined by subject matter experts. This approach leads to better decision making 

earlier in the acquisition timeline and increases the efficiency of design cycles. 

1.0 Introduction 
The traditional industry methodology for designing and evaluating satellite constellations for the 

early phases of a program involve the creation and maturation of a few design concepts with lean 

budgets and deadlines. In this fast-paced, linear design flow, cost evaluations are often only 

addressed towards the end of the process once the design concept has stabilized. Any cost decisions 

made prior to that point are predominantly based on Subject Matter Expert (SME) judgements and 

may not fully consider potential downstream effects on the larger system. This traditional design 

methodology has the following issues: 

• Design concepts are often predicated on previous programs or designs which may have 

limited applicability to the mission. 

• Few design iterations are performed, resulting in potentially non-optimal concepts for cost 

and the required mission performance. 

• Design teams have low flexibility with regards to proposed concepts often opposing drastic 

change in response to aggressive deadlines. 

• Chronological separation of the technical design from the cost assessment results in low 

transparency or complete loss of insight into the cost implications of early design decisions. 
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The approach presented within this paper poses an alternative methodology to supplement early-

stage satellite constellation design that parametrically links performance requirements directly to 

cost through the integration of engineering and cost models currently being employed at BAE 

Systems. This parameterized linkage captures not only the downstream impacts to cost from design 

choices but also allows for the determination of optimal concepts that minimize cost for mission 

requirements. Furthermore, this approach empowers stakeholders to perform on-the-fly “what-if” 

analyses and sensitivity studies at the earliest stages of design. 

2.0 Methodology 
To illustrate a real-world scenario where this methodology can be deployed and showcase its 

powerful capabilities, an example customer request was formulated: 

Suppose that a three-year remote sensing mission is required at a competitive cost 

to help firefighters monitor potential fire risk locations and locate active fires 

across the continental United States at a maximum revisit rate of 6 hours. This 

mission requires that each vehicle be capable of monitoring at least 30 separate 

locations per day with an image resolution less than or equal to 8 meters per pixel 

through smoke for a duration of no less than 2 seconds per location. 

Adequately responding to this request requires multiple types of engineering and analyses to be 

coordinated at the systems level. This becomes complicated because a point-of-departure for the 

design must be chosen and if a problematic or irrelevant starting point design is chosen, the optimal 

design concept may be inaccessible for the program before the first iterations even begin.  

Two ways of proactively addressing these potential shortcomings are to: 1) have enough 

institutional wisdom to know where to begin or 2) deploy a systems-level framework which can 

capture the mission, subsystem, and cost level interdependencies on each other. Both methods for 

addressing potential shortcomings can be leveraged together in a data-driven capacity to build 

parametric surrogate models that directly capture high-level sensitivities within the entire trade 

space. 

The creation of a parametric surrogate model for a complex design space follows four general 

steps which are depicted in Figure 1. First, the independent parameters influencing the design 

space are ascertained, constituting the Continuous Design Space. Second, the continuous design 

space is subdivided (this can be accomplished with varying degrees of resolution), creating the 

Discretized Design Space. Third, instead of simulating each possible combination of parameters 

from the large, discretized design space, a Design of Experiments (DoE) is deployed to maximize 

design space coverage while minimizing number of simulations. Finally, a Parametric Surrogate 

Model is developed using various model fitting or machine learning techniques that captures the 

design space sensitivities and approximates, with some quantifiable confidence, designs that have 

not been simulated. 
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Figure 1: Parametric Surrogate Model Creation Process 

2.1 Design Space  
For any remote sensing mission three questions are always paramount: 1) What does the customer 

want to observe, 2) At what rate does this need to be observed, and 3) How much will it cost? Two 

of these three questions lend themselves well to ascertaining some of the driving independent 

design parameters in the design space. The requirements specify that the customer wants to identify 

fires through smoke which can be accomplished using short wave infrared (SWIR) sensors but 

observing said fires every six hours is not straight forward. Gap time is a mission performance 

metric that represents the time between consecutive accesses of single point on earth and is a 

function of complex interactions between sensor parameters, number of vehicles, vehicle spacing, 

and altitude and is typically arrived at through simulation. 

The customer request further requires that the resolution per pixel must be no more than 8 meters. 

When considered together, certain sensor parameters, altitude, and spherical geometry will yield 

ground sample distance (GSD) which represents the distance between two consecutive pixels in 

any two-dimensional direction. However, if the sensor phenomenology is assumed to be static, 

GSD and altitude can be used to arrive at other sensor properties like physical dimensions. This 

strategic rearrangement allows GSD to become a driving independent design parameter, although 

it is conceivable one may want to instead arrive at GSD instead of using it as a trade variable.  

Finally, the customer requires that at least 30 separate locations be monitored per satellite per day 

over a region roughly the size of the continental United States. This capacity performance 

requirement at the satellite-level will be a function of sensor parameters, agility, and altitude and 

must be determined through simulation because it is non-deterministic and relies upon a scheduling 

algorithm to compute a result. 

From these requirements a picture of linkages between design requirements and independent 

design space parameters inputs begins to take shape. Table 1 compiles what parameters are 

expected to influence the customer performance requirements.  
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Table 1: Design Parameters Influencing Performance 

 

Despite linkages between design parameters and performance requirements being easily 

formalized, a linkage between those same design parameters and cost is not obvious and must be 

developed from simulations and analysis. Cost is complex, but for remote sensing missions cost 

can largely be attributed to the development, production, operations, and launch of space vehicles.  

A space vehicle is comprised of one or more payloads hosted by a bus. The parameters that 

influence space vehicle design are numerous, but at a high level some of the largest drivers are the 

payload(s), required agility, design life, orbit, and risk-posture. Thus, it follows that cost should be 

a direct function of mission impacts on space vehicle design whose constituent components have 

an interdependency on each other’s design. 

Certain space vehicle design parameters have been set static as assumptions for the example 

mission developed within this paper. A few key assumptions are compiled in Table 2. 

Table 2: Select Space Vehicle and Mission Assumptions 

Assumption Rationale 

24°-45° Latitude Assessment Range 
Corresponds to roughly the latitudinal range of the continental 
United States 

Walker Delta Constellation Symmetric structure and uniform performance 

Single-string space vehicle redundancy 
Reductions in mass for better multiple manifest launch 
capabilities and no mission risk posture stated by customer 
request 

Four attitude actuator solution (RWA or CMG) Permits wider range of agility  

Controlled reentry for orbital debris mitigation NASA/international guideline 
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2.2 Analysis Flow 
Figure 2 depicts the formalized analysis flow developed through the formulation of notional model 

linkages and inputs so far. At the center of this process is the integrated model framework that 

captures each individual analysis’ interdependency on one another while assessing launch 

accommodations and cost simultaneously. The inputs from a Design of Experiments (DoE) directly 

link to the modeling outputs, enabling data exploration and parametric models to be developed. 

 

 

Figure 2: Integrated Model Analysis Flow 

The analysis flow shown in Figure 2 provides a process through which large design trade studies 

can be executed. This data-driven approach yields parametric models, providing decision makers 

key insights into the sensitives impacting their mission. 

2.2.1 Design of Experiments 

A major bottleneck in the execution of any large trade space is the number of samples or 

simulations necessary to achieve a desired understanding of that space. Finding a reduced number 

of samples which adequately describe the design space can be easily achieved using a design of 

experiments. Many different DoE methods exist, but for surrogate model development, a Latin-

Hypercube (LHC) sampling design proves most advantageous for sampling continuous data 

efficiently.[1] The discrete data will be sampled using straight-forward factorial combinations, 

although it is conceivable that if the number of factorial combinations were large enough, that a 

fractional-factorial scheme could be used instead. Table 3 details the DoE inputs, their ranges, and 

the DoE sample scheme applied to each input. 

For each factorial combination of number of constellation planes and number of satellites per 

planes, an LHC combination of altitude, slew rate, and ground sample distance is associated until 

there are 45 LHC samples for each possible factorial combination. The resulting number of 

samples to be processed through the integrated analysis flow is 1800. 
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Table 3: DoE Inputs and Ranges 

Design Input Lower Range Upper Range DoE Type 

Altitude (km) 450 800 LHC 

Number of Constellation Planes 4 11 Factorial 

Number of Satellites per Plane 2 6 Factorial 

Slew Rate (deg/s) 0.5 4.0 LHC 

Ground Sample Distance (m) 3.0 30.0 LHC 

2.3 Engineering Models 
With a rough understanding of the factors influencing mission performance and cost, it becomes 

clear that various analyses and models must be integrated so that design space interdependencies 

are captured. Within the Digital Engineering group at BAE Systems, a unified, configurable, and 

rapid mission modeling, space vehicle sizing, and payload estimating framework has been 

developed called MOSAIC (Mission Optimization and System Architecture Insight Capability).  

The mission modeling portion of MOSAIC includes a multitude of features but a few pertinent to 

the example customer request are orbit propagation, target collection scheduling, and space vehicle 

maneuver dynamics. This modeling capability is leveraged for two specific types of analysis: 

access and capacity. Access analyses are predicated on interval-based gap time between satellite 

lines-of-sight and are used to derive revisit metrics. Capacity analyses leverage satellite agility, 

sensor fields-of-view, and scheduling algorithms to assess a constellation’s target observation 

capability. 

The space vehicle modeling capability in MOSAIC is a physics-first, rapid, iterative, and 

subsystem integrated tool suite that leverages historic design choices and SME-developed sizing 

routines. This capability serves as the primary mode through which mission performance is 

transposed into cost and includes numerous inputs ranging from the mission and payload level to 

the subsystem and space vehicle level. The results from this capability are passed into the launch 

assessment analysis and cost modeling portion of MOSAIC. 

The payload modeling module in MOSIAC is a configurable first-order sizing capability that 

leverages physics-based principles and historic regressions. This capability converts mission 

parameters into size, weight, and power (SwaP) requirements for space vehicle modeling. 

2.4 Cost Modeling 
In the example scenario, a key element of the customer’s request is to design a mission at a 

competitive cost. Cost is a major consideration when analyzing architecture design trades.  

Examples of how cost can be considered in a mission analysis may be as: 1) a constraint (i.e. what 

is the highest level of performance for a given cost point), 2) a minimum (ie. what is the lowest 

cost solution possible for acceptable performance?), or 3) as an independent variable (ie. what is 

the optimal solution if both cost and performance are weighted equivalently in importance—the 

best value approach).  In wide-ranging trade spaces, there is a fundamental need for reliable cost 

correlations and sensitivity predictions in relation to modeled performance for each of these cases. 
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Cost modeling capabilities are therefore an essential component of the integrated model 

framework. 

2.4.1 Parametric Estimating 

Projecting cost can be difficult while the design is still in flux during the early phases of a program. 

This can be particularly challenging in cases where an Analysis of Alternatives (AoA) is being 

performed across a broad range of potential technical solutions. For a given technical baseline, 

there may be a notion of what materials and how many labor hours are required, but without 

supplier quotes and inputs from SMEs across the scope of a project, cost analysts must use their 

best judgement to field accurate projections. Even in cases where a design baseline is well 

established, the time and resources required to perform a detailed cost estimate can be significant.  

For this reason and others, Parametric Estimating is commonly deployed during the early phases 

of a program’s lifecycle—primarily Phase A Concept Development and Phase B/C Design 

efforts.[3]  

Parametric Estimating methodologies often employ Cost Estimating Relationships (CERs) 

derived from regression analyses that use independent design parameters to predict cost as a 

dependent variable. CERs can range from complex equations to a simple multiplier such as a rate 

(eg. labor rate or dollar per pound), factor (eg. System’s engineering is X% of underlying prime 

mission equipment, or a ratio (eg. NR/T1 where non-recurring is a ratio of the recurring first unit 

cost).[3] 

CERs prove beneficial in that they can adapt well to changing design parameters and provide 

statistical results offering insights into the quality and uncertainty of an estimate. CERs however, 

can be time-consuming to develop and require the use of cleaned relevant and reliable historical 

data which may be difficult to obtain.[3] Data relevancy can be objective, as certain design 

parameters being estimated may simply fall outside the bounds of the CER’s underlying data. 

Relevancy can also be subjective in cases where design inputs are within the bounds of a CER’s 

underlying dataset, but other factors and assumptions associated with the estimated design can add 

uncertainty to the CER’s applicability. Providing crosschecks and offering insights into a CER’s 

construction and assumptions can help mitigate some of these challenges. 

Utilizing parametric cost estimating in an integrated model framework requires two essential 

ingredients: 1) having relevant CERs coverage for the scope of mission architectures and 2) having 

reliable independent input variables for the CERs. 

2.4.2 Ball Estimating Relationships (BALLER) 

There are a small number of widely accepted and utilized CERs within the cost community, but 

for the purposes of the analysis presented herein the Cost Modeling approach employs custom 

BAE Systems specific CERs called BALLER, whose namesake is derived from legacy Ball 

[Aerospace] Estimating Relationships. BALLER models both non-recurring (NR) and recurring 

(RE) costs separately and are derived from over 30 years of relevant historic program costs.  The 

CER development process follows the principles of the International Cost Estimating & Analysis 

Association’s (ICEAA) Cost Estimating Body of Knowledge (CEBoK®), which includes three 

distinct efforts outlined in Figure 3.  
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Figure 3: CER Development & Integration Process  

Data Normalization – Clean the data needed for CERs 

1. Develop a Standard Work Breakdown Structure (SWBS). 

2. Map SWBS to all historical programs’ cost data (map tech. data to SWBS in step 5). 

3. Normalize cost data: allocate NRE vs RE charges and adjust costs to a common base-year. 

4. Identify candidate variables for data collection (internal and external assessment). 

5. Collect and review technical and programmatic data. 

6. Organize and consolidate data to support efficient regression analysis. 

Regression Analysis – Analyze the data and develop the CERs 

1. Data exploration: assess correlations of independent variables (to each other, and to cost). 

2. Review preliminary data analysis with technical SMEs (revisit tech data as required). 

3. Perform regression analysis and develop CERs. 

4. Review preliminary CERs with technical SMEs (revisit previous steps as necessary). 

5. Publish and document CERs once validation is complete. 

Integration into MOSAIC – Utilize the data by integrating CERs into model framework 

1. Review CERs and assess all independent variables. 

2. Augment engineering models to ensure all CER inputs are represented if necessary. 

3. Integrate CERs into automated mission modeling tools. 

4. Develop software unit tests to validate CER integrations against independent calculations. 

Once the CER development and integration process is completed, a comparison of the BALLER 

CERs in relation to other industry standard CERs also integrated into the modeling framework is 

performed.  An illustration of how a variety of T1 satellite bus costs were estimated utilizing each 

of the CER alternatives, relative to an arbitrary baseline, is visualized in Figure 4.  

Figure 4 demonstrates that, for a wide range of vehicle designs, the BALLER cost models 

generally project lower costs than some other industry standard CERs. Many of these industry 

standard CERs are built from a multitude of historic programs across many different eras, 

customers, suppliers, and mission classes resulting in projections that are less representative of an 

individual supplier’s specific cost and more representative of broader market costs that have been 

historically realized. Procuring U.S. government agencies and commercial buyers each have their 

own unique influences on the costs of their space programs as well based on fundamental 

differences in mission requirements, oversight, and acquisition processes. Interestingly in all cases, 
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the relative T1 bus costs follow a log-normal right skewed shape, a distribution commonly 

associated with space vehicle costs. 

 

Figure 4: CER Comparison-Satellite Relative T1 Bus Cost Distributions 

2.4.3 Cost Estimating Methodology 

The architecture costs assessed for the mission example developed in this paper are the relative 

total space segment development and production costs. These costs are modeled using the custom 

BAE Systems specific CERs and are relative to an arbitrary baseline for sensitive information 

protection. The arbitrary baseline cost used to develop relative space vehicle development and 

production costs is different than the one used to develop the T1 bus cost distributions in Figure 4. 

Relative total space vehicle development and production costs include the NR and RE costs 

associated with space vehicle development and material procurement, systems engineering, 

program management, assembly integration & test (AI&T), launch operations, and launch 

procurement. Additionally, a cost improvement curve is applied to multiple unit builds, capturing 

reductions in RE associated with multi-unit procurements. The cost improvement curve is applied 

assuming a 90% learning curve slope with an arbitrary applicability up to 12 build units. In the 

cases where less than 12 build units are modeled, the learning curve applicability number tracks 

along with the maximum number of builds. 

2.5 Launch Vehicle Assessment 
Launch Vehicle accommodations are assessed for each design using modeled space vehicle SWaP 

and mission altitude inputs. Each design modeled through the integrated framework is assigned a 

launch vehicle using a set of rules that minimizes launch cost while maximizing number of 

satellites capable of being launched from a single launch vehicle. These rules are the following: 

1. The number of satellites that can be launched by a single vehicle is the number of satellites 

that, when summed over mass and volume, can meet the launch vehicle’s mass and volume 

constraints. 

2. The number of launch vehicles required is the number of constellation planes multiplied 

by the number of launch vehicles required to populate that plane given the maximum 

number of satellites that can fit within a single launch vehicle as determined by the previous 

rule. 

3. The chosen launch accommodation is the minimum cost solution arrived at by multiplying 

the number of launches necessary by estimated launch vehicle cost. 
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3.0 Analysis 
Before proceeding straight to building parametric surrogate models it is prudent to gain an 

understanding of how the data generated behaves through data exploration. When visualized 

creatively, data inspection alone may uncover insights into the nature of the relationships that need 

to be synthesized. The more simply a relationship can be captured the better it may be extrapolated 

on or understood for development of institutional wisdom. 

Various combinations of visualizations were explored for the example scenario analysis but a 

few of note are presented here as they clearly and directly capture intriguing major relationships 

and help build confidence in the results. The first figure of interest is Figure 5, which depicts the 

average targets observed per satellite per day vs the average gap time and is colored by altitude. 

 

Figure 5: Average Targets Observed vs Average Gap Time by Altitude 

Figure 5 offers a few key insights into the two performance metrics that were arrived at through 

simulation in the mission modeling part of the integrated engineering models. This figure shows 

that average gap time and average targets observed have an exponential decay relationship. This 

relationship is intuitive suggesting that, as gap time decreases (i.e., revisit rate increases) more 

targets can be imaged. The altitude coloring indicates what should be expected, but informs which 

direction matters in altitude. The major takeaway here is that as altitude increases, both 

performances metrics improve—gap time goes down and the number of targets observed goes up. 

These leads to a question: If increasing altitude leads to better mission performance, what is the 

impact to cost? This question requires the consideration of many more variables and will best be 

addressed through the development of a parametric surrogate model. 

The next visualization of Interest Is Figure 6, which shows the relative cost vs average targets 

observed per satellite and is colored by GSD. The average number of targets observed per day by 

each vehicle improves gradually linearly with respect to cost. Depending on the altitude and sensor 

phenomenology, GSD requirements can often become a direct representation of sensor 
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exquisiteness which is captured well when plotted against cost. It is obvious from Figure 6 that 

both GSD and average number of targets observed per day by each satellite both drive cost, but to 

what extent GSD drives cost is not fully apparent. 

 

Figure 6: BALLER-Based Relative Cost vs Average Targets Observed by GSD 

The last visualization of interest for this data exploration exercise presents the clearest link between 

performance and cost illuminating much of the architecture design space. Figure 7 shows the 

relative cost vs average gap time colored by GSD. GSD presents as having no effect on average 

gap time which is expected as resolution has no bearing on revisit metrics. However, the primary 

takeaway in Figure 7 is that cost trends much more strongly with the average gap than it does with 

average targets observed per satellite per day (Shown in figure 6).  

 

Figure 7: BALLER-Based CER Modeled Relative Cost vs Average Gap Time by GSD 
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The visualizations shown in Figures 6 and 7 indicate that the optimal cost for the performance 

requirements given is somewhere in the range between 80% and 100% relative total space 

segment development and production cost. What this optimal cost is and what design parameters 

yield it can be ascertained from a parametric surrogate model.  

4.0 Parametric Surrogate Modeling 
Surrogate models can be created in a more directed fashion using some of the insights gained 

through the exploration process. Due to the phenomena being captured through the surrogate 

models being fundamentally grounded in physics and geometry, it is preferable to use more 

simplistic and easily interpretable approaches like multiple-linear regressions instead of models 

like neural networks or random forests. The rationale for building the most easily interpretable 

models in this domain is that the end goal for these parametric surrogate models is not just to create 

tools for architecture design, but to inform on the broader trends at work within the design space 

and possibly beyond.  

The parametric surrogate models are created using stepwise multiple-linear regressions for relative 

total space segment cost, average gap time, and average targets observed per satellite per day using 

the design inputs specified in Table 3. Each model is created using varying degrees of polynomial 

and factorial combinations of inputs and occasional logarithmic transforms. The prediction model 

is created using a logistic regression for the same combinations of inputs. An interactive multi-

trend matrix visualization of the parametric surrogate models is shown in Figure 8. 

 

Figure 8: Parametric Surrogate Models 

Visualizing the design space trends in the matrix fashion shown in Figure 8 allows for the 

identification of input sensitivity drivers on outputs being modeled to be isolated. The trends seen 

in Figure 8 are visualized relative to each other and changes in one input parameter may change 

or shift the slopes of another’s relationship to an output. The first key takeaway ascertained from 

visualizing the parametric surrogate model is that not all input parameters influence performance 

metrics, but each input parameter does drive cost. Higher altitudes result in both cost and mission 
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performance improvements (gap time decreasing and targets observed increasing) with faster rates 

of performance increases compared to cost increases indicating a key tradeoff for balancing cost 

and performance. The number of planes and number of satellites per plane increase performance 

at a slower rate than they increase cost, suggesting that these parameters should be increased 

sparingly. The opposite can be said about slew rate—the mission performance increases from slew 

rate improvements have slower rates of cost increases between the ranges of 0.5 deg/s and 1.5 

deg/s. 

4.1 Verification and Validation 
Validation and verification are critical exercises necessary for instilling trust within the efficacy of 

the surrogate models and proving that the trends captured are indeed believable. The surrogate 

models are assessed in three separate ways, through goodness of fit metrics, verification of 

linearity in predicted versus actual plots, and independent model verification. The goodness of fit 

metrics for the surrogate models developed are detailed in Table 3. 

Table 3: Parametric Surrogate Model Goodness of Fit Metrics 

Parametric Surrogate Model R2 RMSE RMSPE 

Average Gap Time (hr) 0.90 2.42 23.8% 

Average Number of Target Observations 

per Vehicle per Day 
0.97 1.52 6.5% 

Relative Total Space Segment 

Development and Production Cost (%) 
0.99 3.50 5.6% 

The R2 values in the goodness of fit metrics being greater than 0.8 suggest that the trends are 

captured well by the models created. The Root Mean Squared Error (RMSE) represents the average 

distance a model-predicted value will be from truth. RMSE provides a good general estimate of 

the expected mean error for the data at-large, but this value can suggest many different things 

depending on where within the model it is applied. An RMSE value assessed at the lower numeric 

areas of a model means a higher relative percent error than an RMSE value assessed at the upper 

numeric end of a model. Because of this, a different goodness of fit metric would be better utilized 

when assessing stringent customer requirements. Root Mean Squared Percent Error (RMSPE) is 

an alternative to RMSE that describes the same distance from truth a model-predicted value can 

be expected to lie except that it is formulated in terms of percent difference instead of the nominal 

data units. This is made clear when addressing the requirement for average gap time. The average 

gap time RMSE value is 2.42 hours which could, in the eyes of a customer, represent an expected 

error bound of about 40% for the 6-hour requirement. Alternatively, the RMSPE value of 23.8% 

would suggest that the expected error bounds would instead be 1.43 hours. 
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Figure 9: Predicted vs Actual Linearity Assessments 

Assessing the linearity of predicted values to actual results provides critical insight into the 

behavior of the models and demonstrates where the model prediction range variance can be 

expected. Figure 9 is a composite of predicted vs actual linearity plots for each of the surrogate 

models created. The top left figure in the composite, the average gap model assessment, suggests 

that the model predicts well in high performing (low gap time) regions, but experiences the highest 

amount of variance around the middle of the numeric range. The average targets observed per 

satellite per day assessment, the top right figure, shows that there is generally low variance in the 

model, but chunks and holes within the plot suggest that many architectures within certain ranges 

of performance were not captured by the DoE. The bottom figure, the linearity in the cost model, 

shows that there is uniform low variance across all ranges. 

5.0 Discussion 
Promising design architecture concepts that are likely to meet the example mission requirements 

with the lowest impact to cost are developed using the parametric surrogate models and are 

aggregated in Table 5. What is clear from the results developed using the surrogate models is that 

concept designs likely to meet the mission requirements at lowest cost have between 15 and 20 

satellites. These designs take advantage of the higher rate of performance increases relative to cost 

increases found by increasing altitude and slew rate while minimizing the number of total vehicles. 

The number of necessary launches for each promising design concept is equal to the number of 

constellation planes indicating that each design takes full advantage of multiple-manifest 

capabilities. Concept 2 provides the lowest relative cost solution while meeting requirements 
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primarily by minimizing the number of vehicles and number of launches. A comparison between 

concepts 1 and 4 suggests that the cost impact from the additional launch required in concept 1 (6 

launches, 18 satellites) may be close to the cost impact of the two additional satellites required in 

concept 4 (5 launches, 20 satellites) with a tradeoff in altitude. 

The primary purpose of the parametric surrogate models is to capture trends and sensitivities in 

the design space, but most importantly, to indicate where promising architecture designs lie 

relative to performance and cost. The parametric surrogate model allows for the identification of 

a solution even if that solution was not used to build the surrogate model that predicted it. Because 

of this, no architecture should be lauded as a solution without a full closed-loop verification 

confirming that promising design concept does indeed yield a solution within the expected range 

of performance based on the goodness of fit metrics. Table 5 additionally compiles the actual 

simulated results of the design concepts identified by the parametric surrogate model. 

Table 5: Concept Designs and Model Assessment 

Design Parameters Concept 1 Concept 2 Concept 3 Concept 4 

Altitude (km) 780 790 772 745 

Number of Constellation Planes 6 4 4 5 

Number of Satellites per Plane 3 4 5 4 

Total Number of Vehicles 18 16 20 20 

Slew Rate (deg/s) 0.80 0.75 0.80 1.00 

Ground Sample Distance (m) 8.0 8.0 8.0 8.0 

Parametric Surrogate Model Prediction 

Gap Time (hours) 5.01 5.93 5.50 5.52 

Average Number of Target Observations 

per Vehicle per Day 
31 31 30 30 

Relative Total Space Segment 

Development and Production Cost (%) 
98.3 91.6 105.2 104.8 

Simulation Model Actual 

Gap Time (hours) 5.51 5.50 4.57 4.64 

Average Number of Target Observations 

per Vehicle per Day 
30 30 30 30 

Relative Total Space Segment 

Development and Production Cost (%) 
98.3 88.0 1.01 1.00 

Predicted Vs. Actual 

Gap Time Error 9.07% 7.82% 20.35% 18.97% 

Target Observation Error 3.33% 3.33% 0.00% 0.00% 

Cost Error 0.27% 3.93% 3.99% 4.55% 

It is apparent from the results compiled in Table 5 that the parametric surrogate model correctly 

captures not only the trends present within the design space, but also the values associated with 

each promising design concept. The errors between predicted values and actual results are all 

within the expected RMSPE calculated for each model indicating that use of the surrogate 

models to identify realistic design concepts is valid. 
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Figure 10: Optimal Design Concept for Cost and Performance 

Now that the optimal solution for cost given the mission requirements has been identified and 

verified, it can be plotted in context with all the data gathered during this process. Figure 10 

shows Concept 2 solution on the relative cost vs average gap time colored by GSD visualization 

previously shown in Figure 5. 

6.0 Conclusion 
The accelerating complexity within the space mission architecture landscape necessitates the 

development of next generation tools, practices and procedures that can forecast the downstream 

impacts to cost and performance from design choices. The data-driven approach presented in this 

paper hinges on the use of an integrated cost and engineering modeling framework that enables 

the reasonable development of large and well linked datasets from which higher-level models can 

be built. Only by leveraging this approach can the distillation of design space sensitives to cost 

within complex system-of-systems interactions become achievable. The capabilities demonstrated 

herein provide the ability to begin designs with a meaningful understanding of the entire design 

space, project where ideal costs should lie given certain requirements, and perform on-the-fly 

“what-if analyses” to not only mission architects and engineers, but stakeholders and customers. 

Though the example scenario formulated in this paper is simple for illustrative purposes, countless 

more complex and wider ranging requests, trades, and missions may be imagined for which this 

data-driven approach may prove relevant . From generating cost advantaged design starting points 

at program/study onset, to tracking downstream cost impacts on choices made, to evaluating and 

designing requirements to minimize cost, the methodologies showcased in this paper satisfy those 

needs.  
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