Costing a Ballistic Schedule

<u>PRESENTERS:</u> ROB CARLOS KADEN HOWELL

The views expressed in this briefing are those of the author and do not reflect the official policy or position of the Department of the Air Force, the Department of Defense, or the U.S. Government. In accordance with Air Force Instruction 51-303, it is not copyrighted, but is the property of the United States government.

Objectives

- Enhance the value of Integrated Cost & Schedule Risk Analysis (ICSRA)
- Promote interest in producing Joint Confidence Level (JCL) estimates for DoD level programs
 - Providing joint likelihood of meeting cost & schedule
- Case study example utilizing ICSRA and producing a JCL for a critical milestone decision

All the data in this case study has been sanitized and modified for proprietary purposes

Government Accountability Office (GAO) Weapon Systems Annual Assessment

$\boldsymbol{\mathcal{C}}$	2003		2015	(2023
	GAO sounded alarms that the DoD was dragging their feet in delivering essential capabilities		53% of R&D costs were overbudget 46% procurement costs were overbudget		Programs continue to make investment decision without sufficient knowledge
)				Potential for risk of delay
		Programs cont longer, cost mo deliver fewer of capabilities that	tinue to take ore, and juantities and an originally	58% of Major Def Programs (MDAP schedule delays	ense Acquisition s) reported
		planned	an onginany	Proceeding with li	mited knowledge
				Signaling potentia	ll risks
		2008		2022	

Source: GAO analysis of Department of Defense data. | GAO-23-106059

MDAPs are taking longer, costing more, and **delivering less capabilities**

Program Name	Months Delayed	Years Delayed
DDG 1000 Zumwalt Class	176	14.67
MQ-4C Triton	92	7.67
Next Generation Operational Control System	83	6.92
Integrated Air and Missile Defense	80	6.67
CH-53K King Stallion -1	79	6.58
KC-46A Tanker Modernization	76	6.33
CVN 78 Gerald R. Ford Class	75	6.25
Small Diameter Bomb Increment II	74	6.17
F-35 Lightning II	62	5.17
VC-25B Presidential Aircraft	37	3.08
F-15 Eagle Passive Active Warning Survivability System	37	3.08
Infrared Search and Track	35	2.92
Ship to Shore Connector	34	2.83
T-AO 205 John Lewis Class	31	2.58
Next Generation Jammer Mid-Band	24	2.00
MQ-25 Stingray	23	1.92
HH-60W Jolly Green II	18	1.50
MH-139A Grey Wolf	17	1.42
T-7A Red Hawk	12	1.00
FFG 62 Constellation Class	12	1.00
LGM-35 Sentinel	12	1.00
	•	

Source: GAO analysis of Department of Defense Data - GAO-23-106059 Pages 46-47

Defense Acquisition Challenges

Perspective

- In general, integrated cost-and-schedule estimates are not performed within the DoD
 - Impact: Estimates don't account for cost growth and consequences when schedules DO SLIP
- Why do most programs not perform an ICSRA estimate?
 - Incomplete Integrated Master Schedule (IMS)
 - Would not pass a Defense Contract Management Agency (DCMA) 14-point assessment
 - Missing logic, has hard constraints, etc
 - Time consuming
- The capability exists to assess the joint cost-and-schedule confidence levels and model uncertainty

Schedule Uncertainty Modeling Challenges

Current schedule influences cost estimate

- Models typically "peanut butter spread" uncertainty dollars over the original period of performance
- Not truly reflective of future work performance

Subjective extended period of performance

Added time and phased over the PoP

Schedule uncertainty \$\$ are not properly phased when required

ICSRA Capabilities

- Quantitative product that shows realistic mean schedule end date vs using Subject-Matter Expert (SME's) best judgement
- Quantitatively visualize schedule growths impact on cost
- Produce higher quality estimates
 - Estimates are far more reasonable, realistic, and complete
 - Funding is more accurately phased into the year of requirement

	Pros	Cons
ICSRA	Quantitative Results More Realistic	Agile to update Time Consuming
Traditional	Easy to model	Inaccurate phasing
Subjective Approach	Quick Results SME input	SME bias Inaccurate phasing

Advantages

Accurate Program Planning

Comprehensive view of cost & schedule risks and uncertainty

Inform Decision Making

- Optimization of resource allocation & program outcomes
- Improve Communication
 - Facilities communication among stakeholders'
- Enhance Program Success Rate
 - Quantitatively derived timeframe

Top Level Challenges Faced

Planning Schedule

- Schedule was workable logic wise, but had quite a bit of float
- Had to identify critical path of IMS tasks to affect schedule when tying discrete program risks
- IMS schedule included only CTR scope and tasks
- JCL tool currently isn't the most agile with updates
 - Anytime the POE was updated, the JCL uncertainty parameters needed to be updated
 - Very time consuming

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

The JCL Process

JCL Process

Step 1: Produce Cost Estimate

- After months working with PMs, ENGs, and other stakeholders, the program's POE estimate was:
 - ~ \$800.0 at Point Estimate (PE)
 - ~ \$900.0 at PE w/risk & uncertainty

Estimate <u>DID NOT</u> account for schedule growth or schedule uncertainty/risk

Step 2: Conduct an SRA

- To build SRA... the program used an analogy to an existing similar program
 - Analogous program had completed over 15,000 tasks
 - Variance Ratio = Actual Duration / Baseline Duration
 - (e.g., Variance Ratio = 1.5 for a task that took 50% longer to complete than the baselined duration)
 - Overall Analogy performance
 - LogNormal Distribution. Peak ~ 1.0 (e.g., actual duration = baseline duration)
 - A very small percentage of tasks have a Variance Ratio > 5 (some as large as 20)

Program Analogy – OBS Mapping

- Applied uncertainty to SRA schedule tasks through analogy to analogous program's applicable OBS structure
- Data was stratified by OBS
 - Differences in most distributions are statistically significant

Step 2: Conduct an SRA (cont)

- Probability of Successfully completing milestone phase by proposed end date was very low (~0.6%)
- SRA Results
 - 0.6% Confidence Level: Original schedule end date
 - 59% Confidence Level: Original schedule end date + 9 months -- Mean finish date
 - 75% Confidence Level: Original schedule end date + 11.5 months

Step 3: Map WBS Elements

Map cost WBS elements to Project schedule

Milestones	1676 d	2	Mon 9/17/29	Fri 5/23/36
EMD Program Milestones	805 d	3	Mon 9/17/29	Wed 12/8/32
!SM! EMD ATP	0 d	4	Mon 9/17/29	Mon 9/17/29
!FM! IBR	0 d	5	Mon 3/11/30	Mon 3/11/30
!FM! dPDR	0 d	6	Mon 10/7/30	Mon 10/7/30
!FM! System CDR	0 d	7	Wed 7/23/31	Wed 7/23/31
<pre>!FM! Milestone C Approval (Govt Reference)</pre>	0 d	8	Thu 2/14/30	Thu 2/14/30
!FM! FFT	0 d	9	Fri 12/12/31	Fri 12/12/31
!FM! SQVR	0 d	10	Thu 6/10/32	Thu 6/10/32
!FM! SQVR Closure	0 d	11	Fri 10/8/32	Fri 10/8/32
!FM! PRR	0 d	12	Mon 10/18/32	Mon 10/18/32
!FM! OTRR (Prior to JST87NE_FTU10)	0 d	13	Wed 5/12/32	Wed 5/12/32
IFM! EMD PoP Completion	0 d	14	Wed 12/8/32	Wed 12/8/32

JACS Build-up

Contractor Costs	3907 d	11606	Mon 9/17/29 Vion 12/12/44
EMD Costs	3907 d	11607	Mon 9/17/29 Vion 12/12/44
EMD Non-Recurring Engineering	2392 d	11608	Mon 9/17/29 Mon 2/21/39
# EMD Component #1	2320 d	11609	Mon 9/17/29 Thu 11/11/38
WBS Element - 1.1	805 d	11610	Mon 9/17/29 Wed 12/8/32
WBS Element - 1.1	0 d	11611	Mon 9/17/29 Mon 9/17/29 455
WBS Element - 1.1	0 d	11612	Wed 12/8/32 Wed 12/8/32 14FF
WBS Element - 1.2	805 d	11613	Mon 9/17/29 Wed 12/8/32
WBS Element - 1.2	0 d	11614	Mon 9/17/29 Mon 9/17/29 455
WBS Element - 1.2	0 d	11615	Wed 12/8/32 Wed 12/8/32 14FF
WBS Element - 1.3	805 d	11616	Mon 9/17/29 Wed 12/8/32
WBS Element - 1.3	0 d	11617	Mon 9/17/29 Mon 9/17/29 4SS
WBS Element - 1.3	0 d	11618	Wed 12/8/32 Wed 12/8/32 14FF

Step 4: Define TI vs TD Relationship

- Each WBS element has a portion of its cost that is time independent (TI) and time dependent (TD):
 - Tasks such as LOE efforts tend to be highly time dependent
 - Tasks such as the purchase of materials tend to be more time independent
- Worked with program cost SMEs and personnel to identify what portion of each element's total cost was time independent vs dependent
 - Time Dependent Tasks: 80/20; 70/30 split
 - Time Independent Tasks: 70/30; 60/40 splits

Step 5: Phasing of JACS Model

- Phased JCL according to outlay used in cost estimate
- Can phase via the following spending contours:
 - Bell curve
 - Flat
 - Ramp up/Steady State/Ramp Down
 - Front/Back Loaded

Favorites Visualization Cases FrontLog References Documentation Successors

How it looks in JACS

Schedule Uncertainty for SRA

588/IMS Schedule Task			
/BS: Duration (days): 20	% Complete: 0 Remaining: 20		
	JACS Task Type: 🗸 🗸		
pending Detail			
otal Cost: 0 Rem	naining: 0		
Time-independent portion of task cost	Time-dependent portion of task cost TD (BY2023\$K): 0 Cost TD as % of Total Cost: 0.00 🜩		
TI (BY2023\$K): 0 Cost			
TIas % of Total Cost: 100.00 ᢏ			
	TD Burn Rate (\$K/workday): 0		
Spending Contour: V	Spending Contour:		
ask Uncertainty			
Duration Uncertainty Tri*(51,100,138,1	15.85)		
TI Cost Uncertainty			
TD Cost Uncertainty			
Selected Uncertainty			
None Normal LogN Triangle PERT Uni	form Constant Discrete		
Low: 51	% chance below low: 15		
Most Likely: 100			
High: 138	% chance below high: 85 -		
Defined as percentages of estimate	(100% = estimate)		
Correlation Grouping: Det	ails Shared Coef: 0 ~		
Risk occurs with likelihood(%): 0	k ID: Activate		
Always on top	evert Commit Close Help		
Iways on top R	evert Commit Close Help		

Cost Uncertainty from POE

PS- Duration (days): 87	7 % Complete: 0 Remaining: 877
Duration (days). 8//	7 % Complete. 0 Remaining. 877
	JACS Task Type: Hammock V
ending Detail	
tal Cost: 5,000,000.00 Re	emaining: 0
Time-independent portion of task cost	Time-dependent portion of task cost
TI (BY2023\$K): 1,500,000.00 Cost	TD (BY2023\$K): 3,500,000.00 Cost
TI as % of Total Cost: 30.00 🜩	TD as % of Total Cost: 70.00 €
	TD Burn Rate (\$K/workday): 3990.88
Spending Contour: Bell 🗸	Spending Contour: Bell
ask Uncertainty	
Duration Uncertainty	
TI Cost Uncertainty LN*(150,35)	
TD Cost Uncertainty LN(150,35)	
Selected Uncertainty	
None Normal Log N Triangle PERT U	Jniform Constant Discrete
Mean: 150	
Std Dev: 35	
Mean and Std Dev defined as perce	entages of estimate (100% = estimate)
Correlation Grouping:	etails Shared Coef: 0 ~
Correlation Grouping: De	etails Shared Coef: 0 ~

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

Results...

Probability of completing EMD by the SRA's mean finish date, and mean JCL cost = <u>44.3% confidence level</u>

Step 6: JCL Results (cont)

Trade space discussion

- With a JCL analysis, though, trade space can be analyzed:
 - ICBMs: Typically, in our experience, programs are baselined and funded to the *mean finish date* and *mean cost* (50-55% typically)
 - NASA: Though baselines and funds to the 70% confidence level
- Program Office's can evaluate trade space based on:
 - Risk tolerance / Inherent uncertainty
 - Maturity / Current program phase
 - Overall portfolio management

22

POE vs JCL Phasing

JCL enables phasing of POE based on expected time of requirement

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

Final Takeaways

JCL Contributions

Baselined to Realistic Schedule

- Probability of completing contract by the POE's finish date, and mean POE cost, ~\$900.0,
 <0.6% confidence
- Probability of completing contract by the SRA's mean finish date, original end date + ~9 months, and mean JCL cost = 44.3% confidence

Program Impact

- Two-thirds of the way through the proposal process
- The program stopped and instructed the contractor to rebid to the new schedule

Result

Prime contractor re-proposal came in within the JCL estimate

Takeaways

- Improved Forecasting: Enhances the ability to estimate cost and schedules accurately
- Comprehensive Insights: Provides a holistic view of the program's timeline and budget requirements
- *Early Risk Identification:* Helps identify potential risks and issues at an early stage
- Trade Space Analysis: Facilitates analysis of alternatives and what if drills
- Informed Decision-Making: Enables informed decisions to keep the program on track and avoid schedule or cost breaches

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

Questions