Flavors of Commonality: Learning in a Multiple Variant Environment

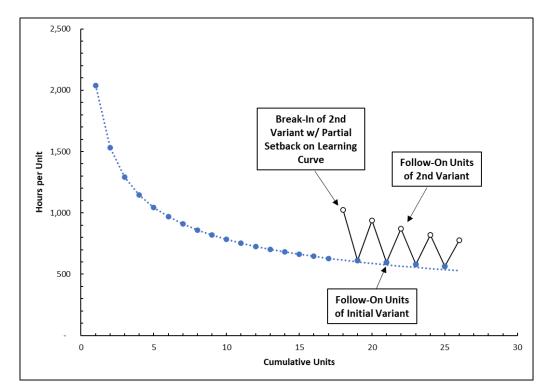
2024 ICEAA Professional Development & Training Workshop, Minneapolis

14-16 May 2024 Brent M. Johnstone, LM Fellow

COPYRIGHT 2024 LOCKHEED MARTIN CORPORATION

Introduction

- "Commonality" is the reuse of parts, designs, tools, engineering, and/or manufacturing processes between different models or variants.
- Frequently observed in the aircraft industry.
- Design commonality in commercial aircraft is promoted to reduce development costs, shorten the design cycle, and create greater market penetration.
- Military aircraft commonality is advanced as a strategy to save development, production and sustainment costs.
 - JAST program the precursor to F-35 -- identified a potential EMD savings of 30-40% in airframe design, 40% savings in test, 30-40% savings in manufacturing and 60-70% savings in avionics for a common fighter program relative to three unique stand-alone programs.


Examples of Commonality

- One-seat (combat) and two-seat (trainer) configuration.
 - F-16C/D & F/A-18E/F fighters.
- Commercial jetliners with stretched or shortened fuselages.
 - Boeing 737 MAX comes in four versions (-7/-8/-9/-10) with same basic aircraft but different fuselage lengths and seating (138 to 204 passengers).
- Military aircraft supporting one military service but come in multiple configurations.
 - C-130J aircraft comes in standard cargo (J-30), tanker (KC-30), special operations (HC/MC), short body (J), weather reconnaissance (WC) or electronic variants (EC).
- Military aircraft supporting more than one military service.
 - F-35A/B/C, V-22, JSTARS E-8, JPATS T-6A, A-7, F-4.

Commonality & Learning

- Learning curve theory assumes the same product is built repetitiously over multiple cycles resulting in a reduction of hours over time.
- If the product is not the same, however, we would expect that some learning loss from prior builds when the alternate configuration is built.
 - Similar to engineering design change where the configuration is altered, evidenced by a regression on the overall learning curve and higher hours per unit.
- Commonality really asks us, "How much learning transfer occurs between variants?"

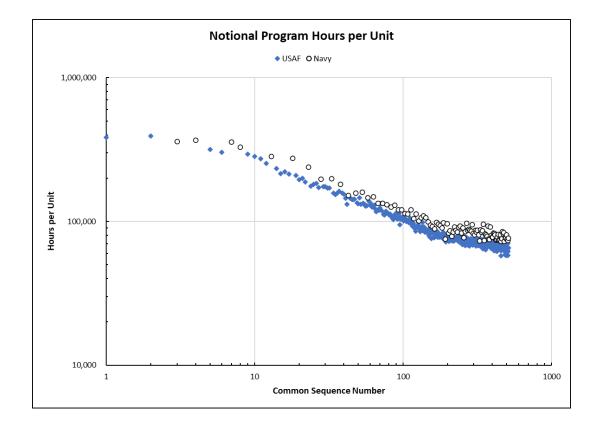
What is "Common"?

- Some suggested approaches:
 - Count number of common vs unique engineering drawings. (Garg, 1961)
 - Count number of common vs unique parts.
 - Sum the empty weight of common vs unique parts.
 - Sum the Industrial Engineering standard hours of common vs unique parts.
 - Engineering judgment based on the similarity or uniqueness of assembly processes and tooling.
- This is not an exhaustive list...Zhang (2019) lists no less than 7 other methods to assess commonality.

What about parts that are similar but not common?

"Cousinality"

- Parts or assemblies may be highly similar between two or more variants, but not *identical*.
- Expect similar parts should show some degree of learning transfer.
- JAST program created following definitions:
 - Common: Physically identical and interchangeable.
 - Cousin: Same material, function, and interfaces similar internal geometry, e.g., bulkheads made of identical material, same external dimensions, yet different web thickness and number of penetrations). Made using common fabrication or assembly tooling.
 - Unique: Single variant application.
- For evaluation purposes, JAST treated a "cousin" part as 85% common & 15% unique.


Notional Program

- To illustrate how we might approach this problem but avoid compromising proprietary information, a dummy set of data has been constructed.
- Two variant aircraft program:
 - Eight EMD aircraft and 500+ production aircraft are built.
 - 80% of aircraft built in an U.S. Air Force (USAF) configuration (Model A).
 - 20% of aircraft built in a U.S. Navy (USN) configuration (Model B).
 - Assume 65% of the manufacturing effort is common between the USAF and USN versions, with the remaining 35% being unique to each variant.
- Using 5 different approaches, use the first 370 aircraft (EMD and Lots 1-11) to develop historical learning curve slopes.
- Apply historical learning curves to forecast the next 144 aircraft (Lots 12-14).
- Compare the forecast to the realized hours for those later aircraft.

Notional Dataset

Total	Phase	Service	Variant	Adj Hours
1	EMD	USAF	Α	384,354
2	EMD	USAF	Α	392,722
3	EMD	Navy	В	359,041
4	EMD	Navy	В	366,820
5	EMD	USAF	Α	316,530
6	EMD	USAF	Α	303,031
7	EMD	Navy	В	355,896
8	EMD	Navy	В	329,786
9	Lot 1	USAF	Α	294,270
10	Lot 1	USAF	Α	283,824
505	Lot 14	USAF	Α	62,361
506	Lot 14	USAF	Α	62,911
507	Lot 14	USAF	Α	61,762
508	Lot 14	Navy	В	73,903
509	Lot 14	USAF	Α	70,701
510	Lot 14	USAF	Α	57,930
511	Lot 14	USAF	Α	61,808
512	Lot 14	USAF	Α	65,429
513	Lot 14	Navy	В	76,368
514	Lot 14	USAF	Α	65,222

Data shows "S" curve shape seen on many historical programs

Commonality & Learning Curve - Approaches

- Jones (2019) suggests 4 different approaches to estimating commonality....I have added a fifth:
 - <u>Ignore Differences</u> (ID) Assume a common learning curve and ignore any cost impact of multiple models.
 - <u>Fixed Factors</u> (FF) Assume a common underlying curve and adjust for variant differences through a fixed factor or relationship between variants.
 - <u>Total Separation</u> (TS) Assume each variant has a unique learning curve and that no learning transfer occurs between variants.
 - <u>Partial Separation</u> (PS) Assume each variant has a unique learning curve but allow learning transfer between variants.
 - <u>Proportional Representation</u> (PR) Assume a given combination of common or unique work has its own peculiar learning curve, but all of them share a common rate of learning.

Learning Curve Breaks

 To develop historical learning, we will use a piecewise regression described in prior papers. (Johnstone, 2022)

 $\ln y = \ln(\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) \ln Dx$

Where:

y = Manufacturing hours per unit (HPU)

 α_1 = Y-intercept for leg #1, equal to theoretical first unit hours for leg #1

 α_2 = Intercept adjustment for leg #2, such that $\alpha_1 + \alpha_2$ equals the Y-intercept for leg #2

 β_1 = Rate of learning for leg #1, such that 2^{β} equals learning curve slope #1

 β_2 = Rate of learning for leg #2, such that $2^{(\beta_1 - \beta_2)}$ equals learning curve for leg #2

- ...but slightly more complicated (three legs vs two in the 2022 JCAP article).
- Essentially, we will "break" the curve into different segments (EMD / early production / late production).
- But we will make different assumptions about rates of learning, counting cumulative learning, and how much learning transfer occurs.

Ignore Differences (ID)

					of cun in leg				It	units bui gression	mulative or our reç	
									J			
•		ariables	endent Va	Indepe		Dependent Variable	akpoints	Curve Bre				
•											Effective	Common
											· · ·	Sequence
3	β3	α3	β2	α2	β1	LN(HPU)	T ₂	T ₁	HPU	Model	Numbér	Number
	-	of cum	Loa o	-	-	12.86	151	9	384,354	Α	1	1
	2 -	n leg #2		-	0.69	12.88	151	9	392,722	A	2	2
		11 icg #2	units i	-	1.10	12.79	151	9	359,041	В	3	3
	•		- /	-	1.39	12.81	151	9	366,820	В	4	4
g of cum	-	-	- /	-	1.61	12.67	151	9	316,530	Α	5	5
s in leg #3	units i	-		-	1.79	12.62	151	9	303,031	Α	6	6
	-	-		-	1.95	12.78	151	9	355,896	В	7	7
. <u> </u>	-	-	-	-	2.08	12.71	151	9	329,786	В	8	8
Mod	- /	-	2.20	1	-	12.59	151	9	294,270	Α	9	9
Nun	-	-	2.30	/ 1	-	12.56	151	9	283,824	Α	10	10
Equ				/ :			:					
II.F					variah	Dummy	:					
		-	5.00				151	9	87,845	Α	149	149
Coe	-	-	5.01	1	leg #2	IOr	151	9	79,812	Α	150	150
02	5.02	/ 1	-	-	-	11.27	151	9	78,318	Α	151	151
02	5.02	/ 1	-	-	-	11.31	151	9	81,745	Α	152	152
	5.03	1	- /	-	-	11.46	151	9	94,523	В	153	153
04 BET	5.04	i1			- r	11.37	151	9	86,816	Α	154	154
BET		able 🗌	ny varia	Dumr			•					
ALF		2	r leg #2	fo			:					
90 ALF	5.90	T 1		-	- L	11.10	151	9	66,039	Α	366	366
91		1	-	-	-	11.10	151	9	66,241	Α	367	367
600		1	-	-	-	11.28	151	9	78,852	В	368	368
91	5.91	1	-	-	-	11.20	151	9	72,902	Α	369	369
91 5	5.91	1	-	-	-	11.18	151	9	71,358	Α	370	370
						-				-		•

Assume there is *no* difference between variants.

Sometimes there may be different models but no observable cost difference.

 L-1011 jetliner had multiple models (-1, -100, -200, -250, -500) but only -500 shortened model showed significant cost delta.

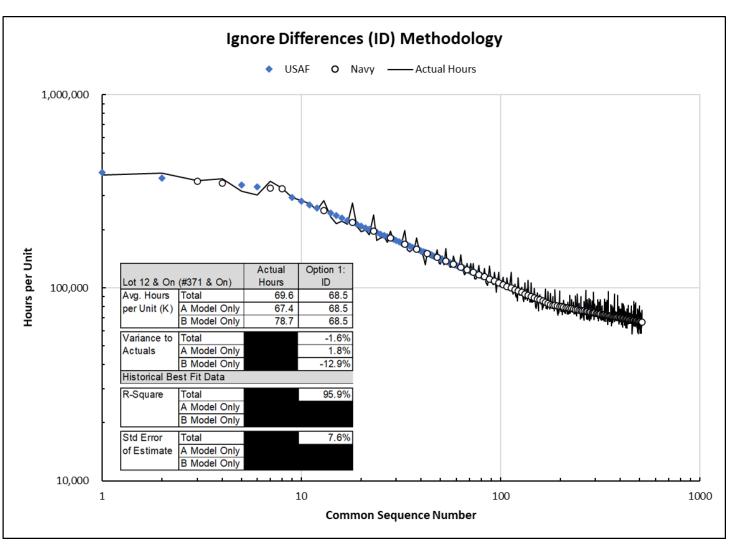
I. Model Form and Equation Table

Model Form:	Unweighted Linear model
Number of Observations Used:	370
Equation in Unit Space:	LN_HBS = 12.89 + (-0.09531)* BETA1 + (-0.4265)* BETA2 + (-0.1968)* BETA3 + 0.6366* ALPHA2 + (-0.5584)* ALPHA

ll. Fit Measures (in Fit Space)

Coefficient Statistics Summary

Variable	Coefficient	Std Dev of Coef	Beta Value	T-Statistic (Coef/SD)	P-Value	Prob Not Zero
Intercept	12.8913	0.0601		214.6371	0.0000	1.0000
BETA1	-0.0953	0.0406	-0.0559	-2.3484	0.0193	0.9807
BETA2	-0.4265	0.0092	-2.4114	-46.4237	0.0000	1.0000
BETA3	-0.1968	0.0200	-1.4561	-9.8498	0.0000	1.0000
ALPHA2	0.6366	0.0716	0.8415	8.8915	0.0000	1.0000
ALPHA3	-0.5584	0.1259	-0.7451	-4.4363	0.0000	1.0000


Goodness-of-Fit Statistics

Std Error (SE)	R-Squared	R-Squared (Adj)	Pearson's Corr Coef	PRESS	R-Squared (Predicted)
0.0755	95.85%	95.80%	0.9791	2.1439	95.72%

TFU - Leg 1	396,828
Slope - Leg 1	93.6%
Slope - Leg 2	74.4%
Slope - Leg 3	87.3%
TFU - Leg 2	750.051
TFU-Leg3	227,039

Ignore Differences (ID)

- Using our historical EMD-Lot 11 curve, forecast is within 1.6% of actual Lot 12-14 hours.
- But data shows a clear cost difference between USAF & USN variants.
- Model would not be appropriate except for very 'rough-cut' estimates.

Fixed Factors (FF)

equal t se 0	l then herwis		lf E									
	es	t Variable	ependen	Inde		Dependent Variable	kpoints	Curve Brea				
B Model Dummy	β3	α3	β2	α2	β1	LN(HPU)	T ₂	T ₁	HPU	Model	Effective Sequence Number	Common Sequence Number
-	-	-	-	-	-	12.86	151	9	384, 354	Α	1	1
7 -	-	-	-	-	0.69	12.88	151	9	392,722	А	2	2
1	-	-	-	-	1.10	12.79	151	9	359,041	В	3	3
1	-	-	-	-	1.39	12.81	151	9	366, 820	В	4	4
-	-	-	-	-	1.61	12.67	151	9	316, 530	Α	5	5
-	-	-	-	-	1.79	12.62	151	9	303,031	А	6	6
1	-	-	-	-	1.95	12.78	151	9	355, 896	В	7	7
1	-	-	-	-	2.08	12.71	151	9	329, 786	В	8	8
-	-	-	2.20	1	-	12.59	151	9	294,270	А	9	9
-	-	-	2.30	1	-	12.56	151	9	283,824	A	10	10
]			5.00	1		11.38	151	9	87,845	A	149	149
-	-	-	5.00	1	-	11.30	151	9	79.812	A	149	149
-	5.02	- 1	5.01	-	-	11.29	151	9	79,012	A A	150	150
-	5.02	1	-		-	11.27	151	9	81,745	A	151	151
- 1	5.02	1	-	-	-	11.31	151	9	94,523	B	152	152
	5.04	1	-	-	-	11.37	151	9	86,816	A	154	154
 	0.04	1	I	:		11.01			00,010		101	
-	5.90	1	-	-	-	11.10	151	9	66,039	А	366	366
-	5.91	1	-	-	-	11.10	151	9	66,241	А	367	367
1	5.91	1	-	-	-	11.28	151	9	78,852	В	368	368
-	5.91	1	-	-	-	11.20	151	9	72,902	А	369	369
	5.91	1	-	-	-	11.18	151	9	71,358	А	370	370

- Assume a common underlying curve and adjust for variant differences through a fixed factor.
- We have made one change to the data....added a dummy variable for the B model.

I. Model Form and Equation Table

Model Form:	Unweighted Linear model	
Number of Observations Used:	370	
Equation in Unit Space:	LN_HRS = 12.89 + (-0.1483)* BETA1 + (-0.4283)* BETA2 + (-0.1968)* BETA3 + 0.6199* ALPHA2 + (-0.583)* ALPHA3	+ 0.152 B_MODEL

II. Fit Measures (in Fit Space)

Coefficient Statistics Summary

Variable	Coefficient	Std Dev of Coef	Beta Value	T-Statistic (Coef/SD)	P-Value	Prob Not Zero
Intercept	12.8855	0.0351	Dette Funde	366.9231	0.0000	1.0000
BETA1	-0.1483	0.0238	-0.0870	-6.2282	0.0000	1.0000
BETA2	-0.4283	0.0054	-2.4215	-79.7236	0.0000	1.0000
BETA3	-0.1968	0.0117	-1.4562	-16.8467	0.0000	1.0000
ALPHA2	0.6199	0.0419	0.8193	14.8043	0.0000	1.0000
ALPHA3	-0.5830	0.0736	-0.7780	-7.9213	0.0000	1.0000
B_MODEL	0.1520	0.0057	0.1669	26.4904	0.0000	1.0000

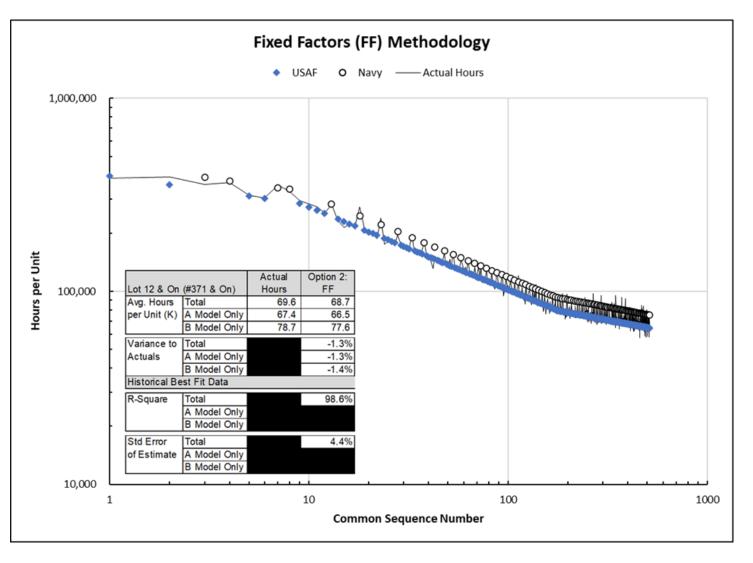
Std Error (SE)	R-Squared	R-Squared (Adj)	Pearson's Corr Coef	PRESS	R-Squared (Predicted)
0.0442	98.59%	98.56%	0.9929	0.7453	98.51%

 TFU - Leg 1
 394,563

 Slope - Leg 1
 90.2%

 Slope - Leg 2
 74.3%

 Slope - Leg 3
 87.2%


 TFU - Leg 2
 733,354

 TFU - Leg 3
 220,252

 B Model Factor
 1.164

Fixed Factors (FF)

- Using our historical EMD-Lot 11 curve, forecast is within 1.3% of actual Lot 12-14 hours.
- More important, our A and B model forecasts are much closer to the realized actual hours.
- Assumes the relationship between A and B models is relatively constant over time.

Total Separation (TS)

	cumula	ative bui	as its ow Id numb ommon)	er		akpoints f ve been m wel Variable/	odified	as	ependent Vari	ables	
Common Sequence Number	Effective Sequence Number	Nodel	HPU	T ₁	T ₂		β1	α2	β2	α3	β3
1	1	/ A	384,354	5	119	12.86	-	-	-	-	-
2	2	A	392,722	5	119	12.88	0.69	-	-	-	-
3	1 /	В	359,041	5	33	12.79	-	-	-	-	-
4	2 /	В	366,820	5	33	12.81	0.69	-	-	-	-
5	3 🕨	А	316,530	5	119	12.67	1.10	-	-	-	-
6	4	А	303,031	5	119	12.62	1.39	-	-	-	-
7	3	В	355,896	5	33	12.78	1.10	-	-	-	-
8	4	В	329,786	5	33	12.71	1.39	-	-	-	-
9	5	А	294,270	5	119	12.59	-		1 1.61	-	-
10	6	А	283,824	5	119	12.56	-		1 1.79	-	-
					:			:			
149	117	А	87,845	5	119	11.38	-		1 4.76	-	-
150	118	А	79,812	5	119	11.29	-		1 4.77	-	-
151	119	А	78,318	5	119	11.27	-	-	-	1	4.78
152	120	А	81,745	5	119	11.31	-	-	-	1	4.79
153	33	В	94,523	5	33	11.46	-	-	-	1	3.50
154	121	А	86,816	5	119	11.37	-	-	-	1	4.80
			- · ·		:			:			
366	291	А	66,039	5	119	11.10	-	-	-	1	5.67
367	292	А	66,241	5	119	11.10	-	-	-	1	5.68
368	76	В	78,852	5	33	11.28	-	-	-	1	4.33
369	293	А	72,902	5	119	11.20	-	-	-	1	5.68
370	294	А	71,358	5	119	11.18	-	-	-	1	5.68

 Assume no learning transfer between variants & each version experiences a different rate of learning.

I. Model Form and Equation Table

Model Form:	Unweighted Linear model
Number of Observations Used:	294
Equation in Unit Space:	LN_HRS = 12.9 + (-0.1862) * BETA1 + (-0.3977) * BETA2 + (-0.209) * BETA3 + 0.3635 * ALPHA2 + (-0.5838) * ALPHA3

II. Fit Measures (in Fit Space)

Coefficient Statistics Summary

Variable	Coefficient	Std Dev of Coef	Beta Value	T-Statistic (Coef/SD)	P-Value	Prob Not Zero
Intercept	12.9047	0.0358		360.3412	0.0000	1.0000
BETA1	-0.1862	0.0377	-0.0589	-4.9395	0.0000	1.0000
BETA2	-0.3977	0.0049	-2.2356	-80.9902	0.0000	1.0000
BETA3	-0.2090	0.0115	-1.5626	-18.1867	0.0000	1.0000
ALPHA2	0.3635	0.0408	0.5084	8.9133	0.0000	1.0000
ALPHA3	-0.5838	0.0707	-0.8213	-8.2568	0.0000	1.0000

USAF						
TFU-Leg 1	402,196					
Slope - Leg 1	87.9%					
Slope - Leg 2	75.9%					
Slope - Leg 3	86.5%					
TFU-Leg2	578,528					
TFU-Leg3	224,336					

Goodness-of-Fit Statistics

Std Error (SE)	R-Squared	R-Squared (Adj)	Pearson's Corr Coef	PRESS	R-Squared (Predicted)
0.0393	98.76%	98.73%	0.9938	0.5403	98.49%

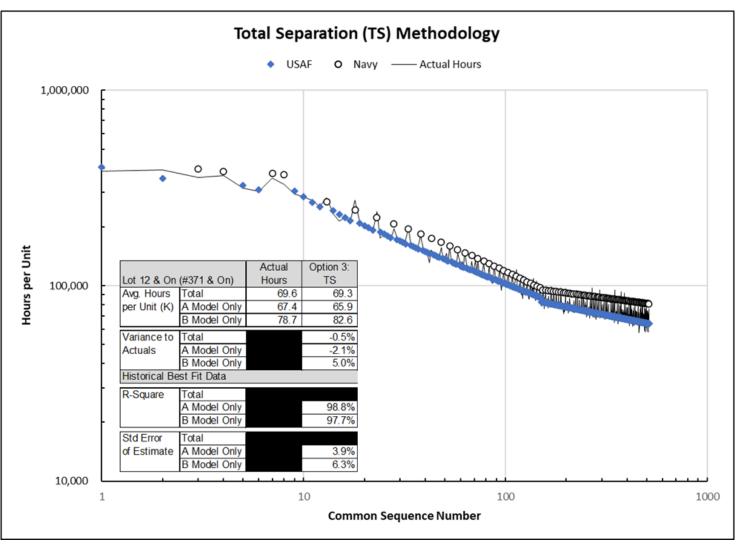
I. Model Form and Equation Table

Model Form:	Unweighted Linear model	
Number of Observations Used:	76	
Equation in Unit Space:	LN_HRS = 12.81+ (-0.05086) * BETA1+ (-0.5459) * BETA2 + (-0.1468) * BETA3 + 0.5661 * ALPHA2 + (-0.8621) * ALPHA	43

II. Fit Measures (in Fit Space)

Coefficient Statistics Summary

Variable	Coefficient	Std Dev of Coef	Beta Value	T-Statistic (Coef/SD)	P-Value	Prob Not Zero
Intercept	12.8135	0.0579		221.4691	0.0000	1.0000
BETA1	-0.0509	0.0609	-0.0272	-0.8351	0.4065	0.5935
BETA2	-0.5459	0.0231	-1.8901	-23.6604	0.0000	1.0000
BETA3	-0.1468	0.0394	-0.7215	-3.7246	0.0004	0.9996
ALPHA2	0.5661	0.0875	0.6818	6.4670	0.0000	1.0000
ALPHA3	-0.8621	0.1671	-1.0629	-5.1601	0.0000	1.0000


Goodness-of-Fit Statistics

Std Error (SE)	R-Squared	R-Squared (Adj)	Pearson's Corr Coef	PRESS	R-Squared (Predicted)
0.0634	97.69%	97.53%	0.9884	0.3430	97.19%

367,146
96.5%
68.5%
90.3%
646,678
155,033

LOCKHEED MARTIN

Total Separation (TS)

- Using our historical EMD-Lot 11 curve, forecast is within 0.5% of actual Lot 12-14 hours.
- However, the forecast errors are larger (2-5%) at the individual variant.
- TS approach would be best suited where different models are built on separate production lines, e.g. Eurofighter where final assembly occurs in 4 separate countries.

Partial Separation (PS)

	Returned to a common unit count for all variants				eturned to curve brea						
				Curve Break	points	Variable		Indepe	ndent Va	riables	
Common Sequence Number	Effective Sequence Number	Model		_	_						
		/	HPU	T ₁	T ₂	LN(HPU)	β1	α2	β2	α ₃	β3
1	1	A	384,354	9	151	12.86	-	-	-	-	-
2	2	A	392,722	9	151	12.88	0.69	-	-	-	-
3	3	В	359,041	9	151	12.79	1.10	-	-	-	-
4	4	B	366,820	9		12.81	1.39	-	-	-	-
5	5	A	316,530	9	151	12.67	1.61	-	-	-	-
6	6	A	303,031	9	151	12.62	1.79	-	-	-	-
7	7	В	355,896	9	151	12.78	1.95	-	-	-	-
8	8	B	329,786	9	151	12.71	2.08	-	-	-	-
9	9	A	294,270	9	151	12.59	-	1	2.20	-	-
10	10	Α	283,824	9	151	12.56	-	1	2.30	-	-
					:			:			
149	149	Α	87,845	9	151	11.38	-	1	5.00	-	-
150	150	Α	79,812	9	151	11.29	-	1	5.01	-	-
151	151	Α	78,318	9	151	11.27	-	-	-	1	5.02
152	152	Α	81,745	9	151	11.31	-	-	-	1	5.02
153	153	в	94,523	9	151	11.46	-	-	-	1	5.03
154	154	Α	86,816	9	151	11.37	-	-	-	1	5.04
					:			:			
366	366	Α	66,039	9	151	11.10	-	-	-	1	5.90
367	367	Α	66,241	9	151	11.10	-	-	-	1	5.91
368	368	В	78,852	9	151	11.28	-	-	-	1	5.91
369	369	Α	72,902	9	151	11.20	-	-	-	1	5.91
370	370	Α	71,358	9	151	11.18	-	-	-	1	5.91

 Similar to TS that each version experiences a different rate of learning, but we assume learning transfer exists between variants.

I. Model Form and Equation Table

Model Form:	Unweighted Linear model
Number of Observations Used:	294
Equation in Unit Space:	LN_HRS = 12.91 + (-0.1452)* BETA1 + (-0.4264)* BETA2 + (-0.211)* BETA3 + 0.5924* ALPHA2 + (-0.5247)* ALPHA3

II. Fit Measures (in Fit Space)

Coefficient Statistics Summary

Variable	Coefficient	Std Dev of Coef	Beta Value	T-Statistic (Coef/SD)	P-Value	Prob Not Zero
variable						and a second s
Intercept	12.9053	0.0335		384.8929	0.0000	1.0000
BETA1	-0.1452	0.0268	-0.0606	-5.4261	0.0000	1.0000
BETA2	-0.4264	0.0052	-2.5485	-82.2160	0.0000	1.0000
BETA3	-0.2110	0.0114	-1.6463	-18.4469	0.0000	1.0000
ALPHA2	0.5924	0.0401	0.8284	14.7761	0.0000	1.0000
ALPHA3	-0.5247	0.0717	-0.7383	-7.3223	0.0000	1.0000

US	AF
TFU-Leg1	402,459
Slope - Leg 1	90.4%
Slope – Leg 2	74.4%
Slope - Leg 3	86.4%
TFU-Leg2	727,760
TFU-Leg 3	238,136
Slope - Leg 2 Slope - Leg 3 TFU - Leg 2	74.4% 86.4% 727,760

Goodness-of-Fit Statistics

Γ			R-Squared	Pearson's		R-Squared
L	Std Error (SE)	R-Squared	(Adj)	Corr Coef	PRESS	(Predicted)
	0.0387	98.79%	98.77%	0.9939	0.4832	98.65%

I. Model Form and Equation Table

Model Form:	Unweighted Linear model
Number of Observations Used:	76
Equation in Unit Space:	LN_HRS = 12.89 + (-0.07207)* BETA1 + (-0.437)* BETA2 + (-0.1398)* BETA3 + 0.8028* ALPHA2 + (-0.7484)* ALPHA2

II. Fit Measures (in Fit Space)

Coefficient Statistics Summary

		Std Dev of		T-Statistic		Prob Not
Variable	Coefficient	Coef	Beta Value	(Coef/SD)	P-Value	Zero
Intercept	12.8904	0.1263		102.0407	0.0000	1.0000
BETA1	-0.0721	0.0754	-0.0675	-0.9563	0.3422	0.6578
BETA2	-0.4370	0.0175	-2.2601	-24.9591	0.0000	1.0000
BETA3	-0.1398	0.0358	-0.9557	-3.9088	0.0002	0.9998
ALPHA2	0.8028	0.1467	0.9670	5.4710	0.0000	1.0000
ALPHA3	-0.7484	0.2349	-0.9227	-3.1861	0.0021	0.9979

Goodness-of-Fit Statistics

Std Error (SE)	R-Squared	R-Squared (Adj)	Pearson's Corr Coef	PRESS	R-Squared (Predicted)
0.0605	97.90%	97.75%	0.9894	0.2972	97.56%

US	SN
TFU-Leg1	396,487
Slope - Leg 1	95.1%
Slope - Leg 2	73.9%
Slope – Leg 3	90.8%
TFU-Leg 2	884,908
TFU-Leg3	187,584

	Λ
LOCKHEED MARTIN	

17 COPYRIGHT 2024 LOCKHEED MARTIN CORPORATION

Partial Separation (PS)

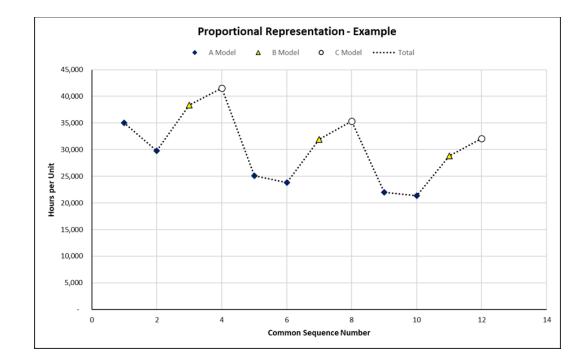
- Using our historical EMD-Lot 11 curve, forecast is within 1.2% of actual Lot 12-14 hours.
- Forecast error at individual variant is reduced from TS method (2%).
- Does it make sense there should be different rates of learning?
 - ~80% of cost improvement attributed to factors besides operator learning. (Jefferson, 1981)
 - Depends on how personnel, tools, supply chain, manufacturing methods & investment strategies are managed across the variants.

- PR method breaks down the different combinations of common versus unique work. ٠
- To demonstrate how complex commonality can get and how PR might prove advantageous -- let's ٠ briefly introduce a C model into the discussion.
- With three variants (A, B and C models), there are seven (7) possible combinations of common and • unique work.
 - ABC Common
 - AB Common
 - AC Common •
 - BC Common •
 - A Unique •
 - **B** Unique •
 - C Unique

The "Seven Flavors of Commonality"

Number of combinations

calculated as 2^x -1


Variants	Number
2	3
3	7
4	15
5	31
6	63

PR method assumes a given combination of common or unique work has its own peculiar learning • curve, but all of them share a common rate of learning.

		Percent Common to Each Model											
	ABC	AB	AC	BC	Α	В	С						
Model	Common	Common	Common	Common	Unique	Unique	Unique	Total					
А	50%	15%	10%		25%			100%					
В	50%	15%		5%		30%		100%					
С	50%		10%	5%			35%	100%					

• TFU hours are broken by "flavor" and run down 85% slope but with different sequence numbers.

								ABC	AB	AC	BC	A	В	С	Variant
								Common	Common	Common	Common	Unique	Unique	Unique	Total
						Work	A	50%	15%	10%		25%			100%
					_	Content	В	50%	15%		5%		30%		100%
	Leaming C	urve Slope		85%		Split	С	50%		10%	5%			35%	100%
	Leaming B	eta		-0.23447											
						T-1	A	17,500	5,250	3,500	-	8,750	-	-	35,000
						Hours	В	22,500	6,750	-	2,250	-	13,500	-	45,000
							С	25,000	-	5,000	2,500	-	-	17,500	50,000
									•						
		Con	nmon/Uniqu	ue Build Seo	quence Nu	mber					Hours pe	er Unit			
	ABC	AB	AC	BC	Α	В	C	ABC	AB	AC	BC	Α	В	С	
Model	Common	Common	Common	Common	Unique	Unique	Unique	Common	Common	Common	Common	Unique	Unique	Unique	Totals
Α	1	1	1		1			17,500	5,250	3,500		8,750			35,000
A	2	2	2		2			14,875	4,463	2,975		7,438			29,750
В	3	3		1		1		17,391	5,217		2,250		13,500		38,358
С	4		3	2			1	18,063		3,865	2,125			17,500	41,552
A	5	4	4		3			11,999	3,793	2,529		6,763			25,084
Α	6	5	5		4			11,497	3,600	2,400		6,322			23,819
В	7	6		3		2		14,257	4,435		1,739		11,475		31,906
С	8		6	4			2	15,353		3,285	1,806			14,875	35,319
Α	9	7	7		5			10,454	3,327	2,218		6,000			21,999
Α	10	8	8		6			10, 199	3,224	2,149		5,749			21,322
В	11	9		5		3		12,824	4,032		1,543		10,434		28,833
С	12		9	6			3	13,961		2,987	1,642			13,526	32,116

• Produces "sawtooth" pattern we would expect to see.

		Percent Common to Each Model										
	ABC	AB	AC	BC	А	В	С					
Model	Common	Common	Common	Common	Unique	Unique	Unique	Total				
А	50%	15%	10%		25%			100%				
В	50%	15%		5%		30%		100%				
С	50%		10%	5%			35%	100%				

	Commona	lity Matrix	
Model	A Credit	B Credit	C Credit
А	100%	65%	60%
В	65%	100%	55%
С	60%	55%	100%

	Cumu	Cumulative Unit Count							
Model	А	В	С	Unit					
А	1	0	0	1.00					
А	2	0	0	2.00					
В	2	1	0	2.30					
С	2	1	1	2.75					
А	3	1	1	4.25					
А	4	1	1	5.25					
В	4	2	1	5.15					
С	4	2	2	5.50					
А	5	2	2	7.50					
А	6	2	2	8.50					
В	6	3	2	8.00					
С	6	3	3	8.25					

For Every A Model Built:

Each A Model: A Receives 100% Learning Credit

Each B Model: ABC Common + AB Common = 50% + 15% = A Receives 65% Credit Each C Model: ABC Common + AC Common = 50% + 10% = A Receives 60% Credit

(3 A's x 100%) + (1 B x 65%) + (1 C x 60%) = Effective Unit 4.25

- However, this can get computationally difficult ... and very hard to calculate historical learning.
- Fortunately, we can use commonality matrix & calculate a single "effective sequence" number that incorporates different commonality by "flavor."

	seq		ates the alculation or page	on		Dependent						capture standard	dummy variat es difference in work content earning)	n
				Curve Bre	akpoints	Variable			Independer	nt Variables			/	
Common Sequence Number	Effective Sequence Number	Model	HPU	Т,	T ₂	LN(HPU)	β1	c,	β2	a a a a a a a a a a a a a a a a a a a	β3	B Model Dummy	We'll	re
1	1.0		384,354	7.6	139.8	12.86	рі	α ₂		α3		Durning	case	
2	2.0	A	384,354	7.6	139.8	12.80	0.69	-	-	-	-			
3	2.0	B	359,041	7.6	111.0	12.00	0.83	-	-	-	-	1		
4	3.3	B	366,820	7.6	111.0	12.81	1.19	-	-	-	-		I. Model Form and	Equati
5	4.3	A	316,530	7.6	139.8	12.67	1.46	-	-	-	-		Model Form:	
6	5.3	A	303,031	7.6	139.8	12.62	1.67	-	-	-	-	-	Number of Observ	ations
7	5.6	В	355,896	7.6	111.0	12.78	1.72	-	-	-	-	1	Equation in Unit S	ipace:
8	6.6	В	329,786	7.6	111.0	12.71	1.89	-	-	-	-	1		
9	7.6	Α	294,270	7.6	139.8	12.59	-	1	2.03	-	-	-	II. Fit Measures (ir	1 Fit Sp
10	8.6	Α	283,824	7.6	139.8	12.56	-	1	2.15	-	-	-	Coefficient Statis	tics Su
		-		1	:			:					Variable	Coe
149	137.8	A	87,845	7.6	139.8		-	1	4.93	-	-	-	Intercept	
150	138.8	A	79,812	7.6	139.8	11.29	-	1	4.93	-	-	-	BETA1	_
151	139.8	A	78,318	7.6	139.8	11.27	-	-	-	1	4.94		BETA2 BETA3	
152	140.8	A	81,745	7.6	139.8	11.31	-	-	-	1	4.9		ALPHA2	
153	111.0	B	94,523	7.6	111.0	11.46	-	-	-	1	4.7		ALPHA3	
154	142.5	Α	86,816	7.6	139.8	11.37	-	-	-	1	4.96	0 -	B_MODEL	
					:			:					Goodness-of-Fit	Statisti
366	339.8	A	66,039	7.6	139.8	11.10	-	-	-	1	5.8	-		
367	340.8	Α	66,241	7.6	139.8	11.10	-	-	-	1	5.8	-	Std Error (SE)	R-S
368	265.8	В	78,852	7.6	111.0		-	-	-	1	5.58		0.0453	98
369	342.4	A	72,902	7.6	139.8	11.20	-	-	-	1	5.84			
370	343.4	Α	71,358	7.6	139.8	11.18	-	-	-	1	5.84	4 -		

We'll return back to our two model (A & B model) case....

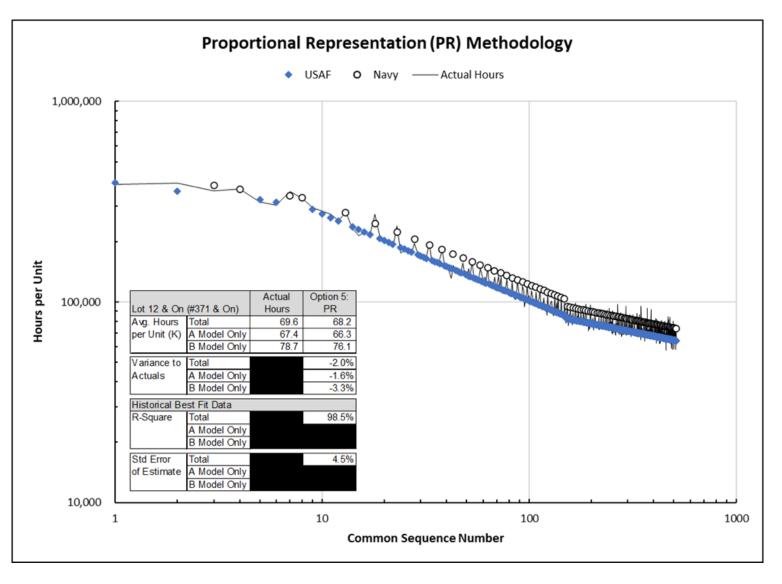
Model Form and Equation Table

Model Form:	Unweighted Linear model
Number of Observations Used:	370
Equation in Unit Space:	LN_HRS = 12.88 + (-0.1342)* BETA1 + (-0.4215)* BETA2 + (-0.2076)* BETA3 + 0.554* ALPHA2 + (-0.5313)* ALPHA3 + 0.08574* B_MC

II. Fit Measures (in Fit Space)

Coefficient Statistics Summary

Variable	Coefficient	Std Dev of Coef	Beta Value	T-Statistic (Coef/SD)	P-Value	Prob Not Zero
Intercept	12.8807	0.0355		363.2449	0.0000	1.0000
BETA1	-0.1342	0.0268	-0.0704	-5.0024	0.0000	1.0000
BETA2	-0.4215	0.0054	-2.3133	-77.6938	0.0000	1.0000
BETA3	-0.2076	0.0116	-1.5020	-17.8864	0.0000	1.0000
ALPHA2	0.5540	0.0419	0.7322	13.2168	0.0000	1.0000
ALPHA3	-0.5313	0.0722	-0.7089	-7.3544	0.0000	1.0000
B_MODEL	0.0857	0.0061	0.0941	13.9869	0.0000	1.0000


TFU-Leg1	392,667
Slope - Leg 1	91.1%
Slope - Leg 2	74.7%
Slope - Leg 3	86.6%
TFU-Leg2	683,295
TFU-Leg3	230,835
B Model Factor	1.090

Goodness-of-Fit Statistics

Std Error (SE)	R-Squared	R-Squared (Adj)	Pearson's Corr Coef	PRESS	R-Squared (Predicted)
0.0453	98.52%	98.49%	0.9925	0.7789	98.44%

Common rate of learning, but each variant is on a • different position on the learning curve at any given point.

- Using our historical EMD-Lot 11 curve, forecast is within 2% of actual Lot 12-14 hours.
- Forecast error at individual variant is reduced from TS method (2-3%).

Comparison of Results

		Actual	Option 1:	Option 2:	Option 3:	Option 4:	Option 5:
Lot 12 & On (#371 & On)		Hours	ID	FF	TS	PS	PR
Avg. Hours	Total	69.6	68.5	68.7	69.3	68.8	68.2
per Unit (K)	A Model Only	67.4	68.5	66.5	65.9	65.9	66.3
	B Model Only	78.7	68.5	77.6	82.6	80.1	76.1
Variance to	Total		-1.6%	-1.3%	-0.5%	-1.2%	-2.0%
Actuals	A Model Only		1.8%	-1.3%	-2.1%	-2.1%	-1.6%
	B Model Only		-12.9%	-1.4%	5.0%	1.8%	-3.3%
Historical Be	st Fit Data						
R-Square	Total		95.9%	98.6%			98.5%
	A Model Only				98.7%	98.8%	
	B Model Only				97.7%	97.9%	
Std Error	Total		7.6%	4.4%			4.5%
of Estimate	A Model Only				3.9%	3.9%	
	B Model Only				6.3%	6.0%	

Legend:

ID – Ignore Differences

FF – Fixed Factors

TS – Total Separation

PS – Partial Separation

PR – Proportional Representation

- Performance of FF is not surprising the notional data was generated using FF assumptions before introducing a random error to provide a realistic spread of values (we loaded the dice!)
- Had we generated the data using different premises, another method would probably produce a better forecast.
- Goal is not to prove one method is always superior to the others....The particulars of a program and its build circumstances will dictate which method is the preferred estimating approach.

When Do I Use Which Method?

Methodology	More Appropriate If:	Less Appropriate If:	Methodology	More Appropriate If:	Less Appropriate If:
Ignore Differences ((D)	 There is little or no cost difference between variants. 	 Significant differences in work content exist between variants. 	Partial Separation (PS)	 Significant degree of common or similar work, but reason to believe each variant has a 	 If the elements of learning that are common or similar between
Fixed Factors (FF)	 Significant amount of work is common or similar and the probability of learning transfer between variants is high. The cost variance between models is expected to be a 	 If component or subcomponent is variant- unique (TS may be more appropriate for that item). 		unique rate of learning.	variants are high contributors to cost improvement, causing the rate of learning between variants to be roughly equal.
	fixed ratio in the future, e.g., B models are 10% more costly than A models.		Proportional Representation (PR)	 Significant amount of work is common or similar and the probability of learning transfer 	 No suitable a priori methodology exists for determining the
Total Separation (TS)	 Individual models are produced in different locations or on unique production lines, and the probability of learning transfer between variants is low. A component or 	 Models are built in the same location and/or same production line with work crews being cycled between models. 		 between variants is high. A fixed cost ratio between models cannot be established from actual cost history, or the relationship of one variant to another is expected to be different in the future. 	percentage of common vs unique work.
	subcomponent is variant- unique (FF, PS or PR may be used for the other, more common build areas).				

 There are no hard and fast rules when to apply one methodology over another, but these are some guidelines that suggest when one approach might work better than another.

Conclusions

- Commonality is the reuse of parts & designs to reduce development & production costs.
- From a learning curve perspective, commonality asks: "How much learning transfer will occur between models or variants?"
- Built a notional program and applied 5 different approaches to estimating commonality costs/benefits.
- Approaches vary regarding assumptions on rates of learning, calculation of cumulative units, degrees of learning transfer.
- No one methodology is inherently superior to the others....which method we should use will depend on the particular circumstances we are estimating.

References

- Aboulafia, R. (1996). Janes Civil Aircraft. Glasgow, UK: HarperCollins.
- About the Boeing 737 MAX (n.d.). Retrieved from https://www.boeing.com/commercial/737max/.
- Benkard, C. L. (2000). Learning and Forgetting: The Dynamics of Aircraft Production. *American Economic Review*, 90(4), 1034-1054.
- Cochran, E. B. (1960, July-August). New Concepts of the Learning Curve. *The Journal of Industrial Engineering*, 317-327.
- Cochran, E. B. (1968). *Planning Production Costs: Using the Improvement Curve*. San Francisco, CA: Chandler Publishing Company.
- Engwall, R. L. (2001). Learning Curves. In K.B. Zandin (Ed.), *Manyard's Handbook of Industrial Engineering* (pp. 17.83-17.104). New York, NY: McGraw Hill.
- *Eurofighter Typhoon*. (n.d.). Retrieved from https://en.wikipedia.org/wiki/Eurofighter_Typhoon.
- Garg, A., & Milliman, P. (1961, January-February). The Aircraft Progress Curve Modified for Design Changes. The Journal of Industrial Engineering, 7(1), 23-28.
- Jefferson, P. (1981, May) Productivity Comparisons with the USA Where Do We Differ? *Aeronautical Journal*, 85(844), 179-184.
- Johnstone, B.M. (2022, November). Projecting Future Costs with Improvement Curves: Perils and Pitfalls. *Journal of Cost Analysis and Parametrics*, 10(3), 64-82.

References

- Johnstone, B. M. (2023, May). Trouble with the Curve: Engineering Changes and Manufacturing Learning Curves. 2023 International Cost Estimating and Analysis Association (ICEAA) Professional Development & Training Workshop, San Antonio, TX.
- Joint Advanced Strike Technology (JAST) Commonality Study Final Report. (1996, August). Arlington, VA: Joint Advanced Strike Technology Program Office.
- Jones, A. R. (2019). *Learning, Unlearning and Re-learning Curves*. London, UK: Routledge.
- Jones, A.R. (2001). Case Study: Applying Learning Curves in Aircraft Production Procedures and Experiences. In K.B. Zandin (Ed.), Manyard's Handbook of Industrial Engineering (pp. 17.197-17.213). New York, NY: McGraw Hill.
- Kennedy, P. A. (1992). A Guide to Econometrics (3rd ed). Cambridge, MA: The MIT Press.
- Lorell, M. A., Kennedy, M., Leonard, R. S., Munson, K., Abramson, S., An, R. A., Guffey, R. A. (2013) Do Joint Fighter Programs Save Money? MG-1225-AF. Santa Monica, CA: RAND.
- Zhang, Y., Yang, Z., Ma, X., Dong, W., Dong, D., Tan, Z., Zhang, S. (2019) Exploration and Implementation of Commonality Valuation Method in Commercial Aircraft Family Design. *Chinese Journal of Aeronautics*, 32(8), 1828-1846. Retrieved from https://www.sciencedirect.com/science/ article/pii/ S100093611930216X.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

