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Flavors of Commonality: Learning in a Multiple Variant Environment 

 

Abstract (75-word limit): Commonality – the reuse of parts, designs and tools across multiple aircraft 
models -- is a popular strategy to reduce program costs in commercial and military applications. But its 
use poses unique challenges to learning curve practitioners. This paper examines five approaches to 
estimating multiple variant programs using different learning curve techniques. A notional dataset is 
created, and the accuracy of each method is measured to highlight the advantages and disadvantages of 
each. 
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Introduction 

Commonality refers to the reuse of parts, designs, tools, engineering, and/or manufacturing processes 
between different models or variants of a product. As a design and build strategy, commonality is 
frequently observed in both commercial and military aircraft. In the commercial world, design 
commonality is promoted to reduce development costs, shorten the design cycle, and create greater 
market penetration. (Zhang, 2019) Similarly, in military usage commonality is advanced as a strategy to 
save development, production and sustainment costs. The Joint Advanced Strike Technology (JAST) 
program identified a potential Engineering and Manufacturing Development (EMD) savings of 30-40% in 
airframe design, 40% savings in test, 30-40% savings in manufacturing and 60-70% savings in avionics for 
a common fighter program relative to three unique stand-alone programs.1 (JAST Commonality Study, 
1996).  

Commonality can appear in various forms and degrees, including: 

• Fighter aircraft which come in a one-seat (combat) or two-seat (trainer) configuration where the 
cockpit is the only distinguishable structural difference. The F-16C/D and the F/A-18E/F fighters 
are current examples. 

• Commercial jetliners where fuselage lengths are stretched or shortened from a baseline 
configuration, allowing airlines to choose aircraft with greater or lesser seats to support a 
particular market. The Boeing 737 MAX comes in four versions (-7/-8/-9/-10) with the same 
basic aircraft but fuselage length ranging from 116 to 143 feet with seating ranging from 138 to 
204 passengers. (About the Boeing 737 MAX, n.d.) 

• Military aircraft designed to support a single military service but come in multiple 
configurations. For example, the C-130J aircraft comes in a standard cargo model (J-30), a tanker 
version (KC-30), special operations version (HC/MC), short body (J), weather reconnaissance 
(WC) or electronic variant (EC).  

• Military aircraft designed to support more than one military service. Examples include the F-4 
fighter, A-7 attack aircraft, JPATS T-6A, JSTARS E-8 and V-22. (Lorell, 2013) The most complex 
example is the F-35 fighter, whose A model (conventional takeoff and landing), B model (short 
takeoff and vertical landing), and C model (carrier variant) have sold over 1,000 aircraft to US 
and international services.  
 

What impact might we expect to see on build hours? Learning curve theory assumes the same product is 
built repetitiously over multiple cycles resulting in a reduction of hours over time. If the product is not 
the same, however, we would expect that some learning loss from prior builds when the alternate 
configuration is built. This is like an engineering design change where there is the configuration is 
altered, resulting in some degree of lost learning, evidenced by a regression on the overall learning 
curve and higher hours per unit. (Johnstone, 2023) But building multiple models or variants of an aircraft 
has additional complexities over and above an engineering design change. For one thing, the impact of 
an individual engineering design change is time-limited: after the initial learning loss, there is a relatively 

 
1 The idea that commonality results in cost savings is not universally accepted. A 2013 RAND paper argued that 
joint aircraft programs historically experienced higher acquisition cost  growth over single-service aircraft programs 
and did not save costs over the program life cycle. (Lorell, 2013) Further analysis of that assertion is beyond the 
scope of this paper. 
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rapid return to the underlying curve. The impact of building multiple models, by contrast, can extend 
across the entire program life cycle.  

Theoretically, the degree of learning loss should vary proportionally to the extent of the configuration 
differences between the different variants. How much learning we can expect to be shared or lost 
between variants will depend on several factors. For example, for an aircraft program we might ask: 

1. How common are the airframe engineering designs between the different variants?  
2. Do they use a common set of mission and vehicle systems? 
3. Will the different variants be built on a common production line, or will they be built on 

separate production lines, possibly even by different companies? 
4. To what extent will the different variants be built using common tooling or manufacturing 

processes? 
5. Will each variant be built using dedicated crews of assemblers? Or will crews be cycled between 

models as aircraft move down the production line? 

The answers to these questions will determine how much learning transfer between variants we might 
reasonably expect. They will also inform us which estimating methodology would serve us best.  

Jones (2019) identifies four estimating options for dealing with commonality. We will deal with each of 
these in turn in the following sections: 

1. Ignore Differences (ID) – Assume a common learning curve and ignore any cost impact of 
multiple models. 

2. Fixed Factors (FF) – Assume a common underlying curve and adjust for variant differences 
through a fixed factor or relationship between variants. 

3. Total Separation (TS) – Assume each variant has a unique learning curve slope and that no 
learning transfer occurs between variants. 

4. Proportional Representation (PR) – Assume a given combination of common or unique work has 
its own peculiar learning curve, but all of them share a common rate of learning. 

To this list, we will add a fifth alternative: 

5. Partial Separation (PS) – Assume each variant has a unique learning curve slope but allow that 
there is learning transfer between variants. 
 

For simplicity of reference, this paper will also use Jones’ nomenclature to refer to each of these 
options. 
 
Three of these five options assume that the multiple variants will share at least a common rate of 
learning. Why might we expect different variants to share common learning curves? Multiple variants in 
a single program may nonetheless share many common decisions -- such as common investment 
strategies, design tools, tooling and build philosophy. A 1981 study of the contributors to learning 
reported that 78% of cost improvement could be attributed to causes other than operator learning 
(tooling, design engineering, management controls). (Jefferson, 1981) And even the mechanics 
themselves should be able to continue learning on similar if not identical operations, provided their 
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crews are permitted to cycle between model versions. This argues that the observed rate of learning on 
a multi-variant program will tend to be more common than unique. 

A Notional Program 

To illustrate application of these methodologies but avoid compromising proprietary information, a 
dummy set of data has been constructed. This notional data presumes a two variant aircraft program 
with 80% of the production  aircraft built in an U.S. Air Force (USAF) configuration while the remaining 
20% are a U.S. Navy (USN) configuration. We will designate the USAF aircraft as Model A and the USN 
aircraft as Model B. A total of eight Engineering and Manufacturing Development (EMD) aircraft and 
500+ production aircraft are built. For this analysis, we will assume that 65% of the manufacturing effort 
is common between the USAF and USN versions, with the remaining 35% being unique to each variant. 

Figure 1 displays a subset of this database: 

 

Figure 1. Subset of Notional Program Data 

Figure 2 shows the program data graphically. 

Total Phase Service Variant Adj Hours
1 EMD USAF A 384,354  
2 EMD USAF A 392,722  
3 EMD Navy B 359,041  
4 EMD Navy B 366,820  
5 EMD USAF A 316,530  
6 EMD USAF A 303,031  
7 EMD Navy B 355,896  
8 EMD Navy B 329,786  
9 Lot 1 USAF A 294,270  
10 Lot 1 USAF A 283,824  

505 Lot 14 USAF A 62,361    
506 Lot 14 USAF A 62,911    
507 Lot 14 USAF A 61,762    
508 Lot 14 Navy B 73,903    
509 Lot 14 USAF A 70,701    
510 Lot 14 USAF A 57,930    
511 Lot 14 USAF A 61,808    
512 Lot 14 USAF A 65,429    
513 Lot 14 Navy B 76,368    
514 Lot 14 USAF A 65,222    

... ...
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Figure 2. Notional Program Hours per Unit 

The program data shows the familiar S-curve shape seen on many historical programs, where the 
development phase shows relatively shallow rates of learning, followed by an initial production phase 
where the rate of learning steepens and significant reductions in hours are made due to reduced 
engineering changes and improved processes and tooling. The third phase that follows displays a 
flattening of the learning curve slope as manufacturing processes stabilize and the program settles into 
higher production rates. (Engwall, 2001; Jones, 2001; Cochran, 1968; Cochran, 1961) 

As demonstrated in prior articles (Johnstone, 2022), we can analyze data following the S-curve pattern 
using a piecewise regression. We start from our familiar improvement curve model: 

    𝑦𝑦 =  𝛼𝛼1𝑥𝑥𝛽𝛽1      (1) 

Where: 

y = Manufacturing hours per unit 
x = Cumulative units built to date 
α1 = Y-intercept, equal to theoretical first unit (TFU) hours 
β1 = Rate of learning, such that 2β equals learning curve slope 
 

After hours per unit and cumulative quantities are converted to natural logarithms, this yields the 
following linear form:   

ln𝑦𝑦 = ln𝛼𝛼1 + 𝛽𝛽1 ln𝑥𝑥      (2) 
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Kennedy (1992) outlines a method for using dummy variables to capture a change in the intercept and 
slope coefficients between two periods. To create a two-leg segmented learning curve, we introduce 
breakpoint unit T. Based on our a priori selection for T, data is separated into pre-break period 1 (x < T) 
and post-break period 2 (x ≥ T). In addition, dummy variable D is created such that D is zero for period 1, 
and one for period 2. Product dummy variable Dx is also created such that Dx takes the value x in period 
2 but is 0 otherwise. This creates the regression equation: 

ln𝑦𝑦 = ln𝛼𝛼1 + ln𝛼𝛼2𝐷𝐷 + 𝛽𝛽1 ln𝑥𝑥 + 𝛽𝛽2 ln𝐷𝐷𝑥𝑥    (3) 

Equation (3) represents two separate cases. Where x < T, variables D and Dx are 0 and equation (3) 
reduces back to our standard improvement curve equation (2). But where x ≥ T and D takes the value of 
one, different intercept and slope values are introduced such that: 

ln𝑦𝑦 = ln(𝛼𝛼1 + 𝛼𝛼2) +  (𝛽𝛽1 + 𝛽𝛽2) ln𝐷𝐷𝑥𝑥     (4) 

Where: 
y = Manufacturing hours per unit (HPU) 
α1 = Y-intercept for leg #1, equal to theoretical first unit hours for leg #1 
α2 = Intercept adjustment for leg #2, such that α1 + α2 equals the Y-intercept for leg #2 
β1 = Rate of learning for leg #1, such that 2β equals learning curve slope #1 
β2 = Rate of learning for leg #2, such that 2(β1 - β2) equals learning curve for leg #2 

 

Similarly, this methodology can be expanded to account for three or more legs of the learning curve. 

We will use the first 370 aircraft (EMD and Lots 1-11) to develop historical learning curve slopes applying 
a piecewise regression as well as using each of these methodologies. We will then apply the resulting 
historical learning curves to forecast the next 144 aircraft (Lots 12-14). Comparing the forecast to the 
realized hours for those later aircraft will demonstrate some of the potential forecasting issues that may 
arise. 

Ignore Differences (ID) 

The first estimating option to deal with variant commonality is to simply ignore it. While this hardly 
seems like an option at all, there may be good reasons to consider it. Not all the differences between 
aircraft configurations result in a significant cost difference. For example, the Lockheed L-1011 
commercial jetliner came in five unique configurations ( -1, -100, -200, -250, -500) but from a learning 
curve perspective, only the shortened  -500 configuration displayed a statistically significant variation in 
cost. The rest of the models could simply be combined for analysis purposes. (Benkard, 2000) 

A visual review of Figure 2 tells us that there is a cost differential between the USAF and USN models, 
and that the ID methodology will probably not provide either a good fit to the data or provide 
particularly accurate forecasts. Nonetheless, we will set up our data for regression as follows under 
Figure 3. In each case we examine, the “common sequence number” (the actual build sequence, 
regardless of model) will stay the same. On the other hand, the “effective sequence number” will vary 
depending on the particular methodology we choose. For learning curve regression purposes, the 
effective sequence number will be the cumulative unit variable. 
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In the ID methodology, the effective sequence number is identical to the common sequence number.  
Thus, we are implicitly assuming that for cost purposes there is no difference between the variants and 
that 100% of the prior learning will be transferred between models. Note that there is nothing in the 
independent variables that identifies USAF or USN models.  

 

Figure 3. Subset of Notional Data Set Up for Regression (ID Methodology) 

The results from the best fit regression are shown below in Figure 4: 

Figure 4. Best Fit Regression – ID Methodology 

 Dependent 
Variable 

Common 
Sequence 
Number

Effective 
Sequence 
Number Model HPU T1 T2 LN(HPU) β1 α2 β2 α3 β3

1 1 A 384,354    9 151 12.86        -     -     -     -     -     
2 2 A 392,722    9 151 12.88        0.69    -     -     -     -     
3 3 B 359,041    9 151 12.79        1.10    -     -     -     -     
4 4 B 366,820    9 151 12.81        1.39    -     -     -     -     
5 5 A 316,530    9 151 12.67        1.61    -     -     -     -     
6 6 A 303,031    9 151 12.62        1.79    -     -     -     -     
7 7 B 355,896    9 151 12.78        1.95    -     -     -     -     
8 8 B 329,786    9 151 12.71        2.08    -     -     -     -     
9 9 A 294,270    9 151 12.59        -     1        2.20    -     -     
10 10 A 283,824    9 151 12.56        -     1        2.30    -     -     

149 149 A 87,845      9 151 11.38        -     1        5.00    -     -     
150 150 A 79,812      9 151 11.29        -     1        5.01    -     -     
151 151 A 78,318      9 151 11.27        -     -     -     1        5.02    
152 152 A 81,745      9 151 11.31        -     -     -     1        5.02    
153 153 B 94,523      9 151 11.46        -     -     -     1        5.03    
154 154 A 86,816      9 151 11.37        -     -     -     1        5.04    

366 366 A 66,039      9 151 11.10        -     -     -     1        5.90    
367 367 A 66,241      9 151 11.10        -     -     -     1        5.91    
368 368 B 78,852      9 151 11.28        -     -     -     1        5.91    
369 369 A 72,902      9 151 11.20        -     -     -     1        5.91    
370 370 A 71,358      9 151 11.18        -     -     -     1        5.91    

Curve Breakpoints Independent Variables

... ...

... ...
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Figure 5 shows the derived learning curve projected through the end of Lot 14. As expected, while the ID 
methodology provides a good forecast at the bottom-line, it does not compare well to Lot 12 and on 
actuals at the individual variant level. For instance, it does a poor job of forecasting the B model, which 
is understated by almost 13%.  

However, if for a given estimate we are not concerned with accuracy at the variant level, the ID 
methodology may answer. In addition, where the two models differ only in a particular area, i.e., the 
cockpit for a one-seat versus a two-seat variant, the ID methodology will probably work for all the 
unaffected component areas.  

 

Figure 5. Learning Curve Best Fit & Forecast, ID Methodology 

Fixed Factors (FF) 

The Fixed Factors methodology is identical to the ID methodology, but with one critical difference: 
dummy variables (1 or 0) are established to account for the difference in aircraft models. Like the ID 
methodology, the effective sequence number is identical to the common sequence number and is not 
adjusted whenever there is a model change.  

Figure 6 shows the setup of the data for regression, where we have added two columns at the far right 
of the table to add the B model dummy variable.  
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Figure 6. Subset of Notional Data Set Up for Regression (FF Methodology) 

The results from the best fit regression are shown in Figure 7 below: 

Figure 7. Best Fit Regression – FF Methodology 

Interpretation of the B model dummy variable needs some explanation. The regression result (0.1520) is 
in logarithmic form and requires transformation. After exponentiation, the value becomes 1.164, which 
means that all else equal, the hours for the B variant are 16.4% higher than the A model.  

 Dependent 
Variable 

Common 
Sequence 
Number

Effective 
Sequence 
Number Model HPU T1 T2 LN(HPU) β1 α2 β2 α3 β3

B 
Model 

Dummy
1 1 A 384,354    9 151 12.86        -     -     -     -     -     -     
2 2 A 392,722    9 151 12.88        0.69    -     -     -     -     -     
3 3 B 359,041    9 151 12.79        1.10    -     -     -     -     1        
4 4 B 366,820    9 151 12.81        1.39    -     -     -     -     1        
5 5 A 316,530    9 151 12.67        1.61    -     -     -     -     -     
6 6 A 303,031    9 151 12.62        1.79    -     -     -     -     -     
7 7 B 355,896    9 151 12.78        1.95    -     -     -     -     1        
8 8 B 329,786    9 151 12.71        2.08    -     -     -     -     1        
9 9 A 294,270    9 151 12.59        -     1        2.20    -     -     -     
10 10 A 283,824    9 151 12.56        -     1        2.30    -     -     -     

149 149 A 87,845      9 151 11.38        -     1        5.00    -     -     -     
150 150 A 79,812      9 151 11.29        -     1        5.01    -     -     -     
151 151 A 78,318      9 151 11.27        -     -     -     1        5.02    -     
152 152 A 81,745      9 151 11.31        -     -     -     1        5.02    -     
153 153 B 94,523      9 151 11.46        -     -     -     1        5.03    1        
154 154 A 86,816      9 151 11.37        -     -     -     1        5.04    -     

366 366 A 66,039      9 151 11.10        -     -     -     1        5.90    -     
367 367 A 66,241      9 151 11.10        -     -     -     1        5.91    -     
368 368 B 78,852      9 151 11.28        -     -     -     1        5.91    1        
369 369 A 72,902      9 151 11.20        -     -     -     1        5.91    -     
370 370 A 71,358      9 151 11.18        -     -     -     1        5.91    -     

Curve Breakpoints Independent Variables

... ...

... ...
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Figure 8 shows the derived learning curve projected through the end of Lot 14. As expected, the FF 
forecast provides an improved fit against the Lot 12 and on actual hours both in total and at the variant 
level. It also visually displays that our use of a dummy variable for the USN model has essentially 
established two parallel learning curves with identical slopes  – one for the A model and one for the B. 

 

Figure 8. Learning Curve Best Fit & Forecast, FF Methodology 

The FF methodology does make the implicit assumption that the cost relationship between the models 
is relatively stable over time. If we were forecasting hours without the benefit of prior actual hour 
history, the relationship between the variants could be established by other means, such as the use of 
Industrial Engineering standards. 

Total Separation (TS) 

The Total Separation (TS) methodology is the opposite of the ID methodology. Instead of assuming that 
all variants are common and that 100% learning transfer will take place between the variants, the TS 
methodology treats each variant as unique and assumes that no learning transfer will take place.  

The TS methodology is best suited for build environments where the individual models are produced in 
different locations. An excellent example is the Eurofighter Typhoon, which has four separate assembly 
lines (Germany, Italy, Spain, and the United Kingdom) where each participating country is responsible 
for final assembly of its national aircraft. (Eurofighter Typhoon, n.d.) It is also well suited for situations 
where unique work is performed, e.g., the cockpit for a one-seat fighter versus a two-seat trainer 
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version. It might also make sense if each variant has a dedicated build crew, and there is no cycling of 
mechanics between models. 

To prepare our data for regression analysis, the effective sequence numbers will be modified to count 
only the cumulative builds for each model, as shown in Figure 9. Note that the change in effective 
sequence methodology required us to adjust our breakpoints for the multi-leg curve, assuming we want 
to retain our previous breaks at the end of EMD (common sequence #8) and mid-Lot 7 (common 
sequence #150). In addition, we will separate our data into two distinct regression models, one for USAF 
and one for USN. 

 

Figure 9. Subset of Notional Data Set Up for Regression (TS Methodology) 

The results from the regression are shown in Figure 10 (USAF model only) and Figure 11 (USN model 
only). 

 Dependent 
Variable 

Common 
Sequence 
Number

Effective 
Sequence 
Number Model HPU T1 T2 LN(HPU) β1 α2 β2 α3 β3

1 1 A 384,354  5 119 12.86        -         -         -         -         -         
2 2 A 392,722  5 119 12.88        0.69       -         -         -         -         
3 1 B 359,041  5 33 12.79        -         -         -         -         -         
4 2 B 366,820  5 33 12.81        0.69       -         -         -         -         
5 3 A 316,530  5 119 12.67        1.10       -         -         -         -         
6 4 A 303,031  5 119 12.62        1.39       -         -         -         -         
7 3 B 355,896  5 33 12.78        1.10       -         -         -         -         
8 4 B 329,786  5 33 12.71        1.39       -         -         -         -         
9 5 A 294,270  5 119 12.59        -         1            1.61       -         -         
10 6 A 283,824  5 119 12.56        -         1            1.79       -         -         

149 117 A 87,845    5 119 11.38        -         1            4.76       -         -         
150 118 A 79,812    5 119 11.29        -         1            4.77       -         -         
151 119 A 78,318    5 119 11.27        -         -         -         1            4.78       
152 120 A 81,745    5 119 11.31        -         -         -         1            4.79       
153 33 B 94,523    5 33 11.46        -         -         -         1            3.50       
154 121 A 86,816    5 119 11.37        -         -         -         1            4.80       

366 291 A 66,039    5 119 11.10        -         -         -         1            5.67       
367 292 A 66,241    5 119 11.10        -         -         -         1            5.68       
368 76 B 78,852    5 33 11.28        -         -         -         1            4.33       
369 293 A 72,902    5 119 11.20        -         -         -         1            5.68       
370 294 A 71,358    5 119 11.18        -         -         -         1            5.68       

Curve Breakpoints Independent Variables

... ...

... ...

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



13 
 

© 2024 Lockheed Martin Corporation, All Rights Reserved 

 

Figure 10. Best Fit Regression – TS Methodology (USAF Only) 

 

Figure 11. Best Fit Regression – TS Methodology (USN Only) 

Comparison of the derived learning curve slopes shows a substantive difference between the two 
variants now. The B model EMD slope is 96.5% versus 87.9% for the A model, while the middle leg has a 
68.5% slope for the B model versus 75.9% for the A model. The slope for the middle leg is so steep for 
the B model because the same reduction in B model hours is now calculated over B peculiar units 5 thru 
32, not common units 9 thru 150 as in the previous examples. If in fact there is significant cross-variant 
learning benefit occurring, the TS methodology has in this instance overstated the true rate of B model 
learning.  

Conversely, Jones (2019) argues that over longer production runs, the TS methodology is likely to 
produce inflated values. Notice for instance the significant difference between slopes for the third leg – 
90.3% for B model versus 86.5% for A model – if this was extended out another several hundred units, 
we might see such an overstatement.   

Figure 12 shows the derived learning curve projected through the end of Lot 14. The TS forecast 
provides the tightest fit to the Lot 12 and on actual hours. This is more a function of luck than skill, 
though, because there is a wider gap at the variant level, particularly for the B model.  
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Regardless of fit statistics, however, the TS methodology would only be appropriate if we are reasonably 
certain there is limited or no transfer of learning between variants. To use it otherwise would risk the 
potential understatement or overstatement of future hours.  

 

Figure 12. Learning Curve Best Fit & Forecast, TS Methodology 

Partial Separation (PS) 

The Partial Separation (PS) methodology is a hybrid methodology. Like the TS approach, it calculates 
different rates of learning for each variant. Like FF, it assumes there is learning transfer between 
variants. 

The only differences in the setup of our data compared to the TS methodology is that we will revert to 
making the effective sequence number equal to the common sequence number and reset our curve 
breakpoints accordingly before splitting our data into separate USAF and USN runs, as seen in Figure 13: 
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Figure 13. Subset of Notional Data Set Up for Regression (PS Methodology) 

The results from the regression are shown in Figure 14 (USAF model only) and Figure 15 (USN model 
only). 

 

Figure 14. Best Fit Regression – PS Methodology (USAF Only) 

 

 Dependent 
Variable 

Common 
Sequence 
Number

Effective 
Sequence 
Number Model HPU T1 T2 LN(HPU) β1 α2 β2 α3 β3

1 1 A 384,354    9 151 12.86        -     -     -     -     -     
2 2 A 392,722    9 151 12.88        0.69    -     -     -     -     
3 3 B 359,041    9 151 12.79        1.10    -     -     -     -     
4 4 B 366,820    9 151 12.81        1.39    -     -     -     -     
5 5 A 316,530    9 151 12.67        1.61    -     -     -     -     
6 6 A 303,031    9 151 12.62        1.79    -     -     -     -     
7 7 B 355,896    9 151 12.78        1.95    -     -     -     -     
8 8 B 329,786    9 151 12.71        2.08    -     -     -     -     
9 9 A 294,270    9 151 12.59        -     1        2.20    -     -     
10 10 A 283,824    9 151 12.56        -     1        2.30    -     -     

149 149 A 87,845      9 151 11.38        -     1        5.00    -     -     
150 150 A 79,812      9 151 11.29        -     1        5.01    -     -     
151 151 A 78,318      9 151 11.27        -     -     -     1        5.02    
152 152 A 81,745      9 151 11.31        -     -     -     1        5.02    
153 153 B 94,523      9 151 11.46        -     -     -     1        5.03    
154 154 A 86,816      9 151 11.37        -     -     -     1        5.04    

366 366 A 66,039      9 151 11.10        -     -     -     1        5.90    
367 367 A 66,241      9 151 11.10        -     -     -     1        5.91    
368 368 B 78,852      9 151 11.28        -     -     -     1        5.91    
369 369 A 72,902      9 151 11.20        -     -     -     1        5.91    
370 370 A 71,358      9 151 11.18        -     -     -     1        5.91    

Curve Breakpoints Independent Variables

... ...

... ...
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Figure 15. Best Fit Regression – PS Methodology (USN Only) 

Comparing the regression results from our PS and TS runs reveals some interesting contrasts. In 
particular, the learning slopes for the PS case are all shallower than in the TS case. This is most evident 
for the USN model, particularly noticeable for its second leg which has flattened from 68.5% to 73.9% 
and is which within range of the USAF slope (74.4%) over the same range. The USAF slopes are flatter as 
well, although these changes are on a smaller scale. 

Figure 16 shows the derived learning curve projected through the end of Lot 14. The PS method 
provides a tighter forecast for the B model than does the TS model, while the A model forecast shows 
the same  variance as observed before.  
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Figure 16. Learning Curve Best Fit & Forecast, PS Methodology 

 

Proportional Representation (PR) 

The proportional representation methodology provides a different methodology for calculating learning 
curve cumulative units. In lieu of using all units or only the units of a singular variant, the PR 
methodology derives a weighted calculation based on the ratio of common to unique work. 

We will briefly take a break from the two-variant notional program we have been examining to explore 
some of the complexities for a three (or more) variant program. It is for such situations that the PR 
approach was initially developed. (Garg, 1961) 

If we have three variants (A, B and C models), there are seven (7) possible combinations of common and 
unique work. (During the early days of F-35 development, we joked with our Northrop Grumman and 
BAE Systems counterparts about the “seven flavors of commonality” -- hence, the title of this paper.) 
We can have ABC common – that is, work that is common to all three variants. Likewise, we can have AB 
common – work common to the A and B variants, but which is not common to the C model. Similarly, 
there is AC common and BC common work. Lastly, there is work that is peculiar to a single variant and 
has no equivalent (A unique, B unique, C unique).  
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In general, we can calculate the number of combinations using the formula 2x – 1 where x is the number 
of variants, as illustrated in Figure 17. 

 

 

Figure 17. Number of Possible Combinations 

For a given aircraft or component, how do we calculate the percentage of work that is common and 
unique? There is no consensus how to do this. Zhang (2019) suggests no less than seven different 
measures of commonality suggested by previous studies. In the author’s experience, he has seen the 
following approaches suggested: 

• Count number of common vs unique engineering drawings (Garg, 1961). 
• Count number of common vs unique parts. 
• Sum the empty weight of common vs unique parts. 
• Sum the Industrial Engineering standard hours of common vs unique parts. 
• Engineering judgment based on the similarity or uniqueness of assembly processes and tooling. 

An additional complication is that a given part may be highly similar between two or more variants, but 
not identical. It follows parts or components that are similar should have some degree of learning 
transfer between variants. To address this the JAST program, which eventually evolved into the F-35, 
created the following definitions: 

• Common: Physically identical and interchangeable 
• Cousin: Same material, function, and interfaces – similar internal geometry, e.g., bulkheads made of 

identical material, same external dimensions, yet different web thickness and number of penetrations). 
Made using common fabrication or assembly tooling. 

• Unique: Single variant application. (JAST Commonality Study, 1996) 

Using the empty weight methodology outlined above, the weight of a cousin part was allocated 85% to 
the common category and 15% to unique. This was done on the assumption that a cousin part would 
retain most, but not all, of the cost advantages of a common part. (JAST Commonality Study, 1996) 
Imagine two composite skins made from the same graphite material, laid up on a common tool, and 
sharing the same outer mold line, but with different ply buildups to account for different load patterns. 
The common characteristics of these parts were judged to be sufficient to allow a high degree of 
learning transfer between the two versions of the skin. 

In the end, the goal is to construct a table like Figure 18, which shows a theoretical example for a 
product with three variants: 

Variants Number
2 3
3 7
4 15
5 31
6 63
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Figure 18. Notional Commonality Matrix 

We can also construct a unit sequence table identifying the cumulative number of units which would be 
built under each commonality “flavor,” as shown in Figure 19. 

 

Figure 19. Cumulative Build Sequences (PR Methodology) 

We can now apply a learning curve to each of these commonality combinations utilizing a single learning 
curve slope but using different theoretical first unit values for each variant (Jones, 2019; Garg, 1961). 
The results will be something like Figure 20. 

Figure 20. Calculation of Three-Variant Model Using PR Methodology. 

Model
ABC 

Common
AB 

Common
AC 

Common
BC 

Common
A   

Unique
B   

Unique
C   

Unique Total
A 50% 15% 10% 25% 100%
B 50% 15% 5% 30% 100%
C 50% 10% 5% 35% 100%

Percent Common to Each Model

Model
ABC 

Common
AB 

Common
AC 

Common
BC 

Common
A   

Unique
B   

Unique
C   

Unique
A 1 1 1 1
A 2 2 2 2
B 3 3 1 1
C 4 3 2 1
A 5 4 4 3
A 6 5 5 4
B 7 6 3 2
C 8 6 4 2
A 9 7 7 5
A 10 8 8 6
B 11 9 5 3
C 12 9 6 3

Common/Unique Build Sequence Number

ABC 
Common

AB 
Common

AC 
Common

BC 
Common

A   
Unique

B   
Unique

C   
Unique

Variant 
Total

Work A 50% 15% 10% 25% 100%
Content B 50% 15% 5% 30% 100%

Learning Curve Slope 85% Split C 50% 10% 5% 35% 100%
Learning Beta -0.23447

T-1 A 17,500      5,250      3,500      -         8,750      -        -        35,000    
Hours B 22,500      6,750      -         2,250      -         13,500  -        45,000    

C 25,000      -         5,000      2,500      -         -        17,500   50,000    

Model
ABC 

Common
AB 

Common
AC 

Common
BC 

Common
A   

Unique
B   

Unique
C   

Unique
ABC 

Common
AB 

Common
AC 

Common
BC 

Common
A   

Unique
B   

Unique
C   

Unique Totals
A 1 1 1 1 17,500      5,250      3,500      8,750      35,000    
A 2 2 2 2 14,875      4,463      2,975      7,438      29,750    
B 3 3 1 1 17,391      5,217      2,250      13,500  38,358    
C 4 3 2 1 18,063      3,865      2,125      17,500   41,552    
A 5 4 4 3 11,999      3,793      2,529      6,763      25,084    
A 6 5 5 4 11,497      3,600      2,400      6,322      23,819    
B 7 6 3 2 14,257      4,435      1,739      11,475  31,906    
C 8 6 4 2 15,353      3,285      1,806      14,875   35,319    
A 9 7 7 5 10,454      3,327      2,218      6,000      21,999    
A 10 8 8 6 10,199      3,224      2,149      5,749      21,322    
B 11 9 5 3 12,824      4,032      1,543      10,434  28,833    
C 12 9 6 3 13,961      2,987      1,642      13,526   32,116    

Common/Unique Build Sequence Number Hours per Unit
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The results of such a calculation can be shown below in Figure 21, which shows the sawtooth pattern we 
have observed from our other commonality methodologies.: 

 

Figure 21. Results of the Three-Variant Model (PR Methodology) 

The calculations, even in this simple three-variant version, can become quite involved. In addition, it is 
difficult to derive historical learning curve slopes from actual hours using this method. Jones (2019) 
suggests that Microsoft Excel Solver can be used to calculate theoretical first unit hours by variant and 
learning curve slope subject to certain constraints. However, as with any non-linear model, it is possible 
that Solver will not converge to a solution. In addition, using Solver means that the conventional 
regression statistics such as R-square or p values are not available. The calculations become even more 
complex when a multi-leg learning curve is introduced. 

Fortunately, a simpler approach can be used to develop estimates as well as calculate historical 
performance.2 It uses the percentages of common and unique work to calculate an effective sequence 
number, which will vary depending on which variant is being built. This allows the different variants to 
appear at separate points on the learning curve such that the hours per unit for more unique variants 
are calculated on earlier segments of the learning curve, resulting in higher hours. 

Figure 22 shows the approach. Our commonality matrix shown in Figure 18 is combined such that, for 
each variant, the percentage learning credit incurred from the other models is calculated.  This allows us 
to say  that for each A model, not only does it earn a full unit of learning for each A model built, but it 
also receives 0.65 of a unit credit for each B model and 0.60 of a unit credit for each C model built to  

 
2 Acknowledgments to Kevin N. Curtis, retired Industrial Engineer and Lockheed Martin Fellow Emeritus, who 
showed me this approach some years ago. 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



21 
 

© 2024 Lockheed Martin Corporation, All Rights Reserved 

that point. The specific amount of credit will depend on the ratio of common to unique work – as   the percentage of unique work increase, the 
learning credit for building the other variants will decrease. 

 

Figure 22.  Alternate Methodology for Calculating Effective Unit Sequences 
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This methodology has the substantial advantage that it allows the historical learning curve slope to be 
easily calculated using a single effective unit value for each aircraft and permitting the use of 
conventional linear regression tools.  

Back to our two-variant notional program. In this case, there are only three possible combinations (AB 
common, A unique, B unique). We will presume that 65% of the aircraft is common between the USAF 
and USN versions and the remaining 35% is variant-unique. Thus, we can develop our effective sequence 
table in Figure 23. Note as well that we have reintroduced our B model dummy variable that we used in 
the FF approach. We still need to account for the greater work content of the USN model independent 
of the learning curve impacts. 

 

Figure 23. Subset of Notional Data Set Up for Regression (PR Methodology) 

The results from the regression are shown in Figure 24.  

 Dependent 
Variable 

Common 
Sequence 
Number

Effective 
Sequence 
Number Model HPU T1 T2 LN(HPU) β1 α2 β2 α3 β3

B Model 
Dummy

1 1.0 A 384,354  7.6 139.8 12.86        -         -         -         -         -         -         
2 2.0 A 392,722  7.6 139.8 12.88        0.69       -         -         -         -         -         
3 2.3 B 359,041  7.6 111.0 12.79        0.83       -         -         -         -         1            
4 3.3 B 366,820  7.6 111.0 12.81        1.19       -         -         -         -         1            
5 4.3 A 316,530  7.6 139.8 12.67        1.46       -         -         -         -         -         
6 5.3 A 303,031  7.6 139.8 12.62        1.67       -         -         -         -         -         
7 5.6 B 355,896  7.6 111.0 12.78        1.72       -         -         -         -         1            
8 6.6 B 329,786  7.6 111.0 12.71        1.89       -         -         -         -         1            
9 7.6 A 294,270  7.6 139.8 12.59        -         1            2.03       -         -         -         
10 8.6 A 283,824  7.6 139.8 12.56        -         1            2.15       -         -         -         

149 137.8 A 87,845    7.6 139.8 11.38        -         1            4.93       -         -         -         
150 138.8 A 79,812    7.6 139.8 11.29        -         1            4.93       -         -         -         
151 139.8 A 78,318    7.6 139.8 11.27        -         -         -         1            4.94       -         
152 140.8 A 81,745    7.6 139.8 11.31        -         -         -         1            4.95       -         
153 111.0 B 94,523    7.6 111.0 11.46        -         -         -         1            4.71       1            
154 142.5 A 86,816    7.6 139.8 11.37        -         -         -         1            4.96       -         

366 339.8 A 66,039    7.6 139.8 11.10        -         -         -         1            5.83       -         
367 340.8 A 66,241    7.6 139.8 11.10        -         -         -         1            5.83       -         
368 265.8 B 78,852    7.6 111.0 11.28        -         -         -         1            5.58       1            
369 342.4 A 72,902    7.6 139.8 11.20        -         -         -         1            5.84       -         
370 343.4 A 71,358    7.6 139.8 11.18        -         -         -         1            5.84       -         

Independent VariablesCurve Breakpoints

... ...

... ...
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Figure 24. Best Fit Regression – PR Methodology 

Figure 25 shows the derived learning curve projected through the end of Lot 14. The PR method 
provides a reasonable forecast of Lot 12 and on with a slightly larger variance for the B model. But in this 
case the variance to actual hours is not quite as good as the FF method. It also has the disadvantage 
that, even with the simplified calculation of effective sequence numbers, of being the most 
computationally complex method.  

 

Figure 25. Learning Curve Best Fit & Forecast, PR Methodology 
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Conclusions 

Figure 26 summarizes the five approaches to estimating commonality and shows how different the 
forward projections can be.  

 

Figure 26. Comparison of Forecasted Hours 

It is worth nothing that from a best fit perspective, four of the five methods have a R-square value of 
greater than 98% with standard errors around 4%. From this perspective, only the ID method can be 
clearly rejected. 

From the perspective of forecast accuracy, the differences between the methodologies become more 
apparent. Overall, the TS, FF and PS methodologies show the greatest accuracy at the top level, ranging 
from -0.5% to -1.3% error. However, the TS methodology shows a higher B model variance (+5.0%) than 
we would probably like. Of the remaining two methods (FF and PS), the FF option provides the forecast 
closer to the true actual hours for Lots 12 and on at the individual variant level (-1.3% versus -2.0% for A 
model and -1.4% versus +1.8% for B model).   

This is hardly surprising because we “rigged” the notional data to make it so -- the hours per unit were  
generated using an FF approach before introducing a random error to provide a realistic spread of 
values. Had we generated the data using a different set of premises, another method would probably 
have produced the best forecast. 

The purpose of this demonstration was not to provide proof that one method is always superior to the 
others. Its purpose is to pilot each method, and to show that the particulars of a program and its build 
circumstances will dictate which method is the preferred approach.  

We might summarize the cases where each methodology might prove more appropriate below in Figure 
27. 

 

 

Lot 12 & On (#371 & On)
Actual 
Hours

Option 1: 
ID

Option 2: 
FF

Option 3: 
TS

Option 4: 
PS

Option 5: 
PR

Avg. Hours Total 69.6         68.5         68.7         69.3         68.8         68.2         
per Unit (K) A Model Only 67.4         68.5         66.5         65.9         65.9         66.3         

B Model Only 78.7         68.5         77.6         82.6         80.1         76.1         
Variance to Total -1.6% -1.3% -0.5% -1.2% -2.0%
Actuals A Model Only 1.8% -1.3% -2.1% -2.1% -1.6%

B Model Only -12.9% -1.4% 5.0% 1.8% -3.3%

Historical Best Fit Data
R-Square Total 95.9% 98.6% 98.5%

A Model Only 98.7% 98.8%
B Model Only 97.7% 97.9%

Std Error Total 7.6% 4.4% 4.5%
of Estimate A Model Only 3.9% 3.9%

B Model Only 6.3% 6.0%
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Methodology More Appropriate If: Less Appropriate If: 
Ignore Differences ((D) • There is little or no cost 

difference between variants. 
• Significant differences in 

work content exist 
between variants. 

Fixed Factors (FF) • Significant amount of work is 
common or similar and the 
probability of learning transfer 
between variants is high. 

• The cost variance between 
models is expected to be a 
fixed ratio in the future, e.g., B 
models are 10% more costly 
than A models. 

• If component or 
subcomponent is variant-
unique (TS may be more 
appropriate for that 
item). 

Total Separation (TS) • Individual models are 
produced in different locations 
or on unique production lines, 
and the probability of learning 
transfer between variants is 
low. 

• A component or 
subcomponent is variant-
unique (FF, PS or PR may be 
used for the other, more 
common build areas). 

• Models are built in the 
same location and/or 
same production line 
with work crews being 
cycled between models. 

Partial Separation (PS) • Significant degree of common 
or similar work, but reason to 
believe each variant has a 
unique rate of learning. 

• If the elements of 
learning that are common 
or similar between 
variants are high 
contributors to cost 
improvement, causing 
the rate of learning 
between variants to be 
roughly equal. 

Proportional 
Representation (PR) 

• Significant amount of work is 
common or similar and the 
probability of learning transfer 
between variants is high. 

• A fixed cost ratio between 
models cannot be established 
from actual cost history, or the 
relationship of one variant to 
another is expected to be 
different in the future. 

• No suitable a priori 
methodology exists for 
determining the 
percentage of common vs 
unique work. 

Figure 27. Comparison of Estimating Methodologies 

As Figure 27 demonstrates, the appropriateness of using one methodology versus another is highly 
dependent on the program’s peculiar circumstances.  
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In the introduction, we asked five questions: 

1. How common are the airframe engineering designs between the different variants?  
2. Do they use a common set of mission and vehicle systems? 
3. Will the different variants be built on a common production line, or will they be built on 

separate production lines, possibly even by different companies? 
4. To what extent will the different variants be built using common tooling or manufacturing 

processes? 
5. Will each variant be built using dedicated crews of assemblers? Or will crews be cycled between 

models as aircraft move down the production line? 

It is the answers to these questions – in addition to the traditional best fit regression statistics --that will 
provide the best guide to the estimator how to proceed.   

 

 

  

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



27 
 

© 2024 Lockheed Martin Corporation, All Rights Reserved 

References 

Aboulafia, R. (1996). Janes Civil Aircraft. Glasgow, UK: HarperCollins. 

About the Boeing 737 MAX (n.d.). Retrieved from https://www.boeing.com/commercial/737max/. 

Benkard, C. L. (2000). Learning and Forgetting: The Dynamics of Aircraft Production. American Economic 
Review, 90(4), 1034-1054. 

Cochran, E. B. (1960, July-August). New Concepts of the Learning Curve. The Journal of Industrial 
Engineering, 317-327. 

Cochran, E. B. (1968). Planning Production Costs: Using the Improvement Curve. San Francisco, CA: 
Chandler Publishing Company. 

Engwall, R. L. (2001). Learning Curves. In K.B. Zandin (Ed.), Manyard’s Handbook of Industrial 
Engineering (pp. 17.83-17.104). New York, NY: McGraw Hill. 

Eurofighter Typhoon. (n.d.). Retrieved from https://en.wikipedia.org/wiki/Eurofighter_Typhoon. 

Garg, A., & Milliman, P. (1961, January-February). The Aircraft Progress Curve – Modified for Design 
Changes. The Journal of Industrial Engineering, 7(1), 23-28. 

Jefferson, P. (1981, May) Productivity Comparisons with the USA – Where Do We Differ? Aeronautical 
Journal, 85(844), 179-184. 

Johnstone, B.M. (2022, November). Projecting Future Costs with Improvement Curves: Perils and Pitfalls. 
Journal of Cost Analysis and Parametrics, 10(3), 64-82. 

Johnstone, B. M. (2023, May). Trouble with the Curve: Engineering Changes and Manufacturing Learning 
Curves. 2023 International Cost Estimating and Analysis Association (ICEAA) Professional Development & 
Training Workshop, San Antonio, TX. 

Joint Advanced Strike Technology (JAST) Commonality Study Final Report. (1996, August). Arlington, VA: 
Joint Advanced Strike Technology Program Office. 

Jones, A. R. (2019). Learning, Unlearning and Re-learning Curves. London, UK: Routledge.  

Jones, A.R. (2001). Case Study: Applying Learning Curves in Aircraft Production – Procedures and 
Experiences. In K.B. Zandin (Ed.), Manyard’s Handbook of Industrial Engineering (pp. 17.197-17.213). 
New York, NY: McGraw Hill. 

Kennedy, P. A. (1992). A Guide to Econometrics (3rd ed). Cambridge, MA: The MIT Press. 

Lorell, M. A., Kennedy, M., Leonard, R. S., Munson, K., Abramson, S., An, R. A., Guffey, R. A. (2013) Do 
Joint Fighter Programs Save Money? MG-1225-AF. Santa Monica, CA: RAND.  

Zhang, Y., Yang, Z., Ma, X., Dong, W., Dong, D., Tan, Z., Zhang, S. (2019) Exploration and Implementation 
of Commonality Valuation Method in Commercial Aircraft Family Design. Chinese Journal of Aeronautics, 
32(8), 1828-1846. Retrieved from https://www.sciencedirect.com/science/ article/pii/ 
S100093611930216X. 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

https://www.boeing.com/commercial/737max/


28 
 

© 2024 Lockheed Martin Corporation, All Rights Reserved 

Biography 

Brent Johnstone is a Lockheed Martin Fellow and production air vehicle cost estimator at Lockheed 
Martin Aeronautics Company in Fort Worth, Texas. He has 36 years’ experience in the military aircraft 
industry, including 33 years as a cost estimator. He has worked on the F-16 program and Advanced 
Development Programs and has been for 25 years the lead Production Operations cost estimator for the 
F-35 program. He has a Master of Science from Texas A&M University and a Bachelor of Arts from the 
University of Texas at Austin. 

 

My appreciation to Bernie Belley, retired Director of F-35 Estimating & Pricing, who encouraged me to 
write and submit a paper on commonality.  

 

 

 

 

 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024




