Introduction **Jamie Bouwens –** Associate Systems Engineer at L3Harris - 3.5 years of Industrial/Systems Engineering experience - B.S. in Industrial Engineering University of Central Florida - Yellow belt in Six Sigma American Society of Quality (ASQ) - Database Architect for Cost Engineering & Analytics Department (CEAD) with L3Harris ## **Table of Contents** - Case Study - Background - Dimensional Database - Six Sigma - Before Tools - After Tools - Applying Tools - Conclusion ## **Case Study – Data Pipeline** #### Subject: • Team with no prior database designing experience was tasked with the project to design a data pipeline. #### **Current State:** # **Case Study – Data Pipeline** #### Subject: • Team with no prior database designing experience was tasked with the project to design a data pipeline. **Source Data** **Data Preparation** **Data Storage** Analytics & Bl #### **Future State:** # Why do we care? # Case Study - Background #### **Problems** - 1. Department's current data management method is insufficient for department current and future goals. - 2. Team tasked with the data pipeline project has no database experience, dimensional or otherwise. #### **Goal of Team** Create a new data management system using a dimensional database as the data storage method. #### **Goal of Presentation** - Use a case study where six sigma methodologies were implemented to guide the project to success. - Provide you with a project format and a list of tools you can use to get through this project using Six Sigma methodologies. # **Dimensional Database** ## **Context** #### **Dimensional Database:** This is a relational database that uses dimensional data model to organize data. This data model uses the Star Schema architecture. #### **Star Schema:** Database structure that uses fact tables and dimension tables with foreign-primary key relationships. #### **Fact Table:** Stores the most basic unit of measurement of a business process. (Usually transactional data of some kind, such as purchases, orders, etc.) #### Fact: Most basic unit of measurement of a business process. (A transaction, an order, a phone call, etc.) #### **Dimension Table:** Stores the who, when, and where of each business process. #### Foreign Key: A column that references another table (hence the name foreign). It's used to join data from two tables, typically a fact and dimension table #### **Primary Key:** A column in a dimension table identifying a unique row of data. Primary keys are referenced by foreign keys to join fact and dimension tables ## What is Star Schema? ## Star Schema is more than just a star... ## **Dimensional Database – Cost Engineering** #### Simple Example: Let's say you have a Cost Engineering team. Your dimensional database would look something like this: # **Dimensional Database – Star Schema – Cost Engineering** #### **Complex Example:** Let's say you are the data analyst for a company that has decided to take all its gathered data and store it into a dimensional database. Below are just a FEW of the dimensions you might see, this is not all of them. #### Employee Dimension: - Employee Key - Name - ID - Email - Location # Charge Code Dimension: - Charge Code Key - Labor Type - Project ID - Project Description - Project Title # Business Structure Dimension: - Business Structure Key - Organization - Department - Team #### Training Dimension: - Training Key - Course Name - Course ID - Instructor - Course Pre-reg - Course Level # Fact Table [Columns]: - Index Column - Value (fact) - Business Structure - Employee - CES - Start Time - End Time - Charge Code - Date of Completion - Start Date - Program Status - Training #### Time Dimension: - Time Key - Hour - Minute - Seconds - Full Time #### Date Dimension: - Date Key - Year - Month - Day - Full Date # Cost Estimating Status Dimension: - CES Key - Status Name - Resolution Status - Priority - Status POC # Program Status Dimension: - Program Key - Program Title - Program Description - Status Name - Milestone Status - Program POC # Dimensional Database - Star Schema - Cost Engineering #### **Complex Example:** Let's say you are the data analyst for a company that has decided to take all its gathered data and store it into a dimensional database. Below are just a FEW of the dimensions you might see, this is not all of them. #### Employee Dimension: - Employee Key - Name - ID - Email - Location # Charge Code Dimension: - Charge Code Key - Labor Type - Project ID - Project Description - Project Title # Business Structure Dimension: - Business Structure Key - Organization - Department - Team #### **Training Dimension:** - Training Key - Course Name - Course ID - Instructor - Course Pre-reg - Course Level # Fact Table [Columns]: - Index Column - Value (fact) - Business Structure - Employee - CES - Start Time - End Time - Charge Code - Date of Completion - Start Date - Program Status - Training #### Time Dimension: - / Time Key - / Hour - Minute - Seconds - Full Time #### Date Dimension: - Date Key - Year - Month - Day - Full Date # Cost Estimating Status Dimension: - CES Key - Status Name - Resolution Status - Priority - Status POC # Program Status Dimension: - Program Key - Program Title - Program Description - Status Name - Milestone Status - Program POC Reference Biehl textbook #### What is Six Sigma? - Six Sigma is a set of techniques, methodologies, and tools made for process improvement. - Think of it like a tool belt #### What are we focusing on? Six Sigma Methodologies and their tools: #### What is Six Sigma? - Six Sigma is a set of techniques, methodologies, and tools made for process improvement. - Think of it like a tool belt #### What are we focusing on? Six Sigma Methodologies and their tools: #### What is Six Sigma? - Six Sigma is a set of techniques, methodologies, and tools made for process improvement. - Think of it like a tool belt #### What are we focusing on? Six Sigma Methodologies and their tools: #### What is Six Sigma? - Six Sigma is a set of techniques, methodologies, and tools made for process improvement. - Think of it like a tool belt #### What are we focusing on? Six Sigma Methodologies and their tools: **DMAIC** Existing process **DMADV** **Entirely New Process** # **Before/After/Application** ## **Before Method** # How are you feeling? # Pause and Take a Breath # **After Method (DMADV)** #### Identify the Problem/Project Goal Tools: Project Charter, Gantt Chart, Stakeholder Analysis Matrix, Voice of Stakeholders Tools, CTQ Trees, SIPOC, Value Stream Map (VSM) #### **Identify the Problem/Project Goal** Tools: Project Charter, Gantt Chart, Stakeholder Analysis Matrix, Voice of Stakeholders Tools, CTQ Trees, SIPOC, Value Stream Map (VSM) #### **Problem/Process Analysis** - Voice of Customer/ Employee/ Business (tools) - Project Charter - Gantt Chart Define High-level Process map (PMAP) #### **Stakeholder Analysis** Suppliers – Input – Process – Output – **Customers (SIPOC)** Stakeholder Analysis Matrix #### **Requirements Analysis** - SIPOC -> SIRPORC - Critical-To-Quality (CTQ) Trees # **Define – Example** #### Voice of Customer (VoC): - Takes too long to produce metrics - Impossible to do some analytics desired due to the manual workload - Our methods can't keep up with the increasing work #### **Project Charter:** Problem Space: Why are we doing this? How do we judge success? Possible solutions? Analyze - Validation: What do we already know? What do we need to answer? - Scale & Scope, Why will a customer want this? | SUPPLIERS | REQUIREMENTS | INPUTS | PROCESS | OUTPUTS | Requirements | CUSTOMERS | |-----------|---------------------------------------|--------|---|-----------------|-------------------------------------|-----------| | User | Descriptive
and specific
syntax | Query | Receive Query Validate Query Alter Data Provide Altered Data | Queried
Data | Must
match
query's
actions | User | Design → Verify/Validate ## Measure Define the Critical-To-Quality's and determine the methods you will use to measure them Tools: Data Collection Plan, CTQs cont'd **Data Collection Analysis** Prioritize your customer requirements. How do you plan to gather your measurements? #### Define the Critical-To-Quality's and determine the methods you will use to measure them Tools: Data Collection Plan, CTQs cont'd #### **Data Collection Analysis** - CTQs cont'd - Take those requirements from the CTQs and turn them into measures - Data Collection Plan - What's your measurement plan? - Gather As-Is process metrics # **Measure – Data Collection Plan Example** | Measure Name | Data Type | Operational Definition | Stratification Factors | Sampling Notes | Who & How? | |------------------------------|-------------------------|---|--|--|---| | What would you call it? | Discrete/
Continuous | What is the airtight description? | Will you slice data by who, what, where, and when? | How much data will you collect? How often will you collect? | Who will collect and what method will they use? | | Time to gather Data | Continuous | This is the time (in minutes) it takes from
the moment of gathering data to update
metrics to the moment the presentation
of metrics is uploaded, and every
graphic is updated & validated. | By business purpose | Sample every update made to department metrics for the span of 3 months starting 1/1 | Team member will observe operations manager, timing with the clock. | | Number of Errors in
Data | Discrete | This is the number of errors found in the data that has been uploaded into the database after ETL and before BI. | By data upload by business purpose by data source | Sample every update made to department metrics for the span of 3 months starting 1/1 | Team member will perform tests on gathered data to see if there are any discrepancies. | | Degree of
Standardization | Continuous | This is the level of variability or deviation from standards that can be found in the Data Governance procedures/processes. | By procedure/process by employee | Sample every update made to department metrics for the span of 3 months starting 1/1 | Team member will calculate the variability in the data by pulling the data for certain processes uploaded by different employees. | # **Analyze** #### Convert critical to quality trees to process features. Develop and evaluate design concepts Tools: Pugh Matrix, FMEA, Evaluate design options from measure, Detailed Process Mapping **Design Analysis** What variety of solutions are there? Solution pros/cons? Risk assessment of features # **Analyze** #### Convert critical to quality trees to process features. Develop and evaluate design concepts Tools: Pugh Matrix, FMEA, Evaluate design options from measure, Detailed Process Mapping #### **Design Analysis** - Detailed Process Mapping - Decision Tree Analysis - Pugh Matrix - FMEA - Evaluate design options from measure # **Analyze – Example** Design → Verify/Validate | Measures | Current State | Design 1 – Dimensional
Database – SCD Method 1 –
Type 1 | Design 2 – Dimensional Database –
SCD Method 2 – Type 2 | Design 3 – Dimensional Database –
SCD Method 2 – Mixed Type 1 & 2 | |--------------------------------------|---------------|---|--|--| | # of Data Storage
Methods | 50+ | 1 | 1 | 1 | | Bytes of Data Stored | 20 GB | 1 GB | 25 GB | 16 GB | | Bytes of Data
Accessible at once | 2GB | Microsoft SQL Server:
180GB | Microsoft SQL Server:
180GB | Microsoft SQL Server:
180GB | | Time to gather data | Several Hours | < 5min | < 10min | < 10min | | % of Business
Process Data Stored | 100% | 10% | 100% | 70% | | % of Missing Data | 0% | 90% | 0% | 30% | | Degree of
Standardization | No Standards | Standard Procedures | Standard Procedures | Standard Procedures | # Design #### Create a prototype of the design and complete trial runs. Finalize the design. Tools: Quality Function Deployment (QFD), Prototyping, Tolerance Analysis, Standard Operating Procedures, Standard Work **Develop Detailed Plans/Procedures** What happens if you don't meet those requirements? Is your design reliable? **Building Design** Pick the design of preference from Analyze phase Build that design in detail # Design #### Create a prototype of the design and complete trial runs. Finalize the design. Tools: Quality Function Deployment (QFD), Prototyping, Tolerance Analysis, Standard Operating Procedures, Standard Work #### **Develop Detailed Plans/Procedures** - Procedure Design - Management Systems Standard (MSS) - Standard Work #### **Building Design** - Quality Function Deployment (QFD) - Tolerance Analysis - Prototyping #### **Complex Example:** Let's say you are the data analyst for a company that has decided to take all its gathered data and store it into a dimensional database. Below are just a FEW of the dimensions you might see, this is not all of them. #### Employee Dimension: - Employee Key - Name - ID - Email - Location # Charge Code Dimension: - Charge Code Key - Labor Type - Project ID - Project Description - Project Title # Business Structure Dimension: - Business Structure Key - Organization - Department - Team #### Training Dimension: - Training Key - Course Name - Course ID - Instructor - Course Pre-reg - Course Level # Fact Table [Columns]: - Index Column - Value (fact) - Business Structure - Employee - CES - Start Time - End Time - Charge Code - Date of Completion - Start Date - Program Status - Training #### Time Dimension: - Time Key - Hour - Minute - Seconds - Full Time #### Date Dimension: - Date Key - Year - Month - Day - Full Date # Cost Estimating Status Dimension: - CES Key - Status Name - Resolution Status - Priority - Status POC # Program Status Dimension: - Program Key - Program Title - Program Description - Status Name - Milestone Status - Program POC # Validate/Verify #### Implement the final design and confirm that it achieves the desired results Tools: DVP&R, Check Sheets, Standard Operating Procedures (SOP), Standard Work, Change Management, Control Plan, Implementation Plan **Testing Plans/Reports** How are you going to test your design meets your **KPI requirements?** **Performance Evaluation** How did your design perform? **Final Project Evaluation** **Lessons Learned?** How do you plan to implement? #### Implement the final design and confirm that it achieves the desired results Tools: DVP&R, Check Sheets, Standard Operating Procedures (SOP), Standard Work, Change Management, Control Plan, Implementation Plan #### **Testing Plans/Reports** Test Plan Validate/Verify **Design Verification plan &** Report (DVP&R) #### **Performance Evaluation** - Pilot - **Control Charts** - **Check Sheets** #### **Final Project Evaluation** - **Lessons Learned** - **Change Management** - **Implementation Plan** # Validate/Verify – Example ## Design Verification plan & Report (DVP&R): | Test ID | Test Name/
Description | Objective | Steps | Expected
Result | Actual
Result | Severity / Priority | Comments | Assigned
To: | Execution
Date: | Bug ID /
Defect ID | |---------|---------------------------|---|---|--------------------|------------------|---------------------|-----------------------------------|---------------------|--------------------|-----------------------| | 1 | Time to Query | Measure the time it takes to query data once request received | Receive Query . . | <10 min | 4 min | Medium Priority | Exceeded expectations | Database
Manager | Mm/dd/yyyy | N/A | | 2 | # errors in
data | Find errors in data | 1
2 | 0 | 2 | High Priority | Unique
naming error
located | ETL
Manager | Mm/dd/yyyy | Bug A | | 3 | Access
Restrictions | Catch
unauthorized
access | 1
2 | 4 | 4 | Medium Priority | Met
Expectations | Database
Manager | Mm/dd/yyyy | N/A | ### Implementation Plan: | Action Item (List steps required to implement) | Responsible (List person(s) responsible for action steps) | Due Date (When action items must be completed) | |--|---|--| | Pull all the data into Database | ETL Manager | Mm/dd/yyyy | | Regularly pull data weekly for 3 months | ETL Manager | Mm/dd/yyyy | | Transition queries to database | Database Manager | Mm/dd/yyyy | # Conclusion # "You are not making a system more complex; you're just realizing how complex the system really is" -Richard Biehl ## You made it! # Thank you # **Backup Slides** # **Slowly Changing Dimensions** #### oType 0: Retain Original - No Changes - Date Table (Except holidays) - •"Original" (e.g. original product name) - •Very simple & easy to maintain #### oType 1: Overwrite - •Old attributes just overwritten - Only current state reflected - Very simple - •No Fact Table needs to be modified #### oType 1 Problems: - History is lost - Might affect/break existing queries #### oWhen to use Type 1: When making insignificant changes #### oType 2: Additional Row - Perfectly partitions history - •Changes reflected in history - •NO updates in fact table - •From that moment, new foreign key #### oType 2 Problems: - Difficult to do queries such as "All current products?" - Not distinguishable so additional strategies much be implemented (SEE SOLUTIONS) | ••• | Category | Prev_Category | |-----|----------|---------------| | | Sweets | Sweets | | | Biscuit | Sweets | #### oType 2 Solutions: - •No. of products?: Still can use natural keys that exist and count distinct ID's to get # of products - •Add columns "Effective Date", "Expired Date", and "Is_Current" - 1.e.g. 1/1/2020, 9/8/2023, No - 2.Steps: Add new Row, lookup in Dimension using the natural key and ef_/Ex_Date #### oMixing Type 1 & 2 - •Use Type 1 for the columns that contain insignificant attributes, like product name, where history is not important. - •Use Type 2 for the columns that contain majorly significant attributes, such as category, where history is important. #### oWhen to mix Type 1 & Type 2 •Note that the crossed out Chocolate would've been fully replaced with Candy but to show the replacement it is left in this example. #### oType 3: Additional Attribute - •In-between: You might do this if you want to be able to switch between versions - •Instead of adding row add a column #### oType 3 Limitations: - •Not suitable for frequent or unpredictable changes - 1.USE TYPE 2 FOR THAT - Not suitable for minor changes - 1.USE TYPE 1 FOR THAT | Primary Key | ID | Product Name | Category | Ef_Date | Ex_Date | |-------------|----|-----------------|----------|----------|------------| | 1 | SG | Glasses | А | 1/1/2022 | 12/31/2100 | | 2 | СН | Chocolate-Candy | S | 1/1/2022 | 12/31/2100 | | 3 | ОТ | Biscuits | S | 1/1/2022 | 6/1/2022 | | 4 | ОТ | Biscuits | В | 6/1/2022 | 12/31/2100 | ## **Dimensional Database** | | Product Dimension | | | | | | | | | |-----|-------------------|-----------|--------------------|------------------|-----------------|--|--|--|--| | Key | ID | Category | Name | Selling
Price | Cost to
Make | | | | | | 1 | 1000 | Skin Care | Retinol | \$20 | \$10 | | | | | | 2 | 2000 | Jewelry | Earrings | \$15 | \$5 | | | | | | 3 | 3000 | Art | Sunset
Painting | \$50 | \$10 | | | | | | Time Dimension | | | | | | | | |----------------|------|--------|---------|-----------|--|--|--| | Key | Hour | Minute | Seconds | Full Time | | | | | 1 | 15 | 30 | 16 | 15:30:16 | | | | | 2 | 9 | 29 | 32 | 09:29:32 | | | | | | Fact Table | | | | | | | | |-------|------------|----------|---------|---------|----------|--------------|--------------|--| | Index | Order ID | Quantity | Revenue | Product | Customer | Time Ordered | Date Ordered | | | 1 | 12001 | 2 | \$80 | 3 | 1 | 2 | 1 | | | 2 | 12002 | 1 | \$10 | 1 | 2 | 1 | 2 | | | 3 | 12002 | 1 | \$10 | 2 | 2 | 1 | 2 | | | | Customer Dimension | | | | | | | | | |-----|--------------------|--------------------------------------|--------------|----------------------|--|--|--|--|--| | Key | Name | Address | Phone Number | Email | | | | | | | 1 | John Smith | 101 Smith St. Orlando,
FI 123456 | 321-123-9090 | J.smith@gmail.com | | | | | | | 2 | Doe
Richards | 1301 Doe St.
Rochester, NY 123456 | 509-321-7890 | d.richards@gmail.com | | | | | | | Date Dimension | | | | | | | | |----------------|------|-------|-----|------------|--|--|--| | Key | Year | Month | Day | Full Date | | | | | 1 | 2023 | 11 | 15 | 11/15/2023 | | | | | 2 | 2024 | 01 | 20 | 01/20/2024 | | | | ## **Dimensional Database** | | Product Dimension | | | | | | | | | |-----|-------------------|-----------|--------------------|------------------|-----------------|--|--|--|--| | Key | , ID | Category | Name | Selling
Price | Cost to
Make | | | | | | 1 | 1000 | Skin Care | Retinol | \$20 | \$10 | | | | | | 2 | 2000 | Jewelry | Earrings | \$15 | \$5 | | | | | | 3 | 3009 | Art | Sunset
Painting | \$50 | \$10 | | | | | | Time Dimension | | | | | | | | |------------------------------|----|----|----|----------|--|--|--| | Key Hour Minute Seconds Full | | | | | | | | | 1 | 15 | 30 | 16 | 15:30:16 | | | | | 2 | 9 | 29 | 32 | 09:29:32 | | | | | | | | | | | | | | | | | | | Fact Table | | | | | | | | |-------|----------|----------|---------|---|------------|---|----------|---|---|-------------|---|-------------| | Index | Order ID | Quantity | Revenue | | Product | | Customer | | Т | ime Ordered | D | ate Ordered | | 1 | 12001 | 2 | \$80 | 3 | | 1 | | | 2 | | 1 | | | 2 | 12002 | 1 | \$10 | 1 | | 2 | | 1 | 1 | 7 | 2 | | | 3 | 12002 | 1 | \$10 | 2 | | 2 | | | 1 | | 2 | | | | | | | | | | | | | | | | | | Customer Dimension | | | | | | | | |-----|--------------------|--------------------------------------|--------------|----------------------|--|--|--|--| | Key | / Name | Address | Phone Number | Email | | | | | | 1 | John Smith | 101 Smith St. Orlando,
FI 123456 | 321-123-9090 | J.smith@gmail.com | | | | | | 2 | Doe
Richards | 1301 Doe St.
Rochester, NY 123456 | 509-321-7890 | d.richards@gmail.com | | | | | | Date Dimension | | | | | | | | |----------------|--------|-------|-----|------------|--|--|--| | Ke | y Year | Month | Day | Full Date | | | | | 1 | 2023 | 11 | 15 | 11/15/2023 | | | | | 2 | 2024 | 01 | 20 | 01/20/2024 | | | | | | | | | | | | |