Technomics Better Decisions Faster

Advancing the Art of Cybersecurity Cost Estimating

New Considerations for Structure and Assumptions

ICEAA Workshop Minneapolis, MN

May 15th, 2024

Agenda

Introduction: Why is Cyber Cost Important?

Emerging Cyber Initiatives

Introduction to Secure Software WBS

Case Study Application

Limitations

Conclusion

Team

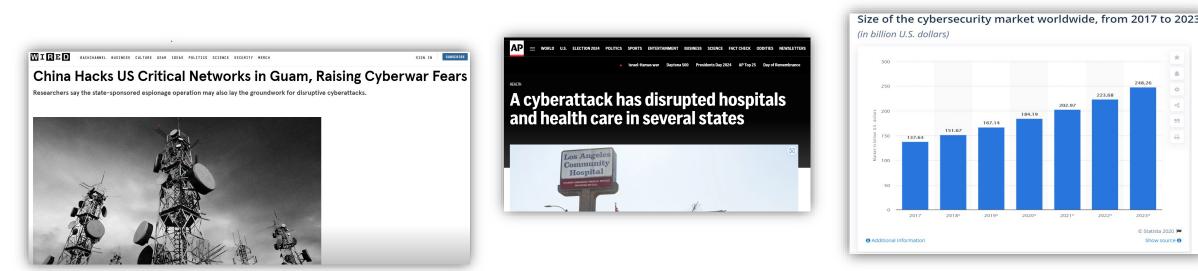
Austin MacDougall

Mr. MacDougall is a CCEA and SCEC certified cost analyst with over 6 years of professional experience spanning IT cost estimating and analysis, agile software implementation support, and program management support. During his time at Technomics, Austin has supported a number of clients in the federal space, including DHS, FEMA, CBP, and others. He has a Bachelor's Degree from Dickinson College.

William Gellatly

William Gellatly is a SCEC certified analyst with more than 10 years of experience in IT estimation support and analysis for multiple government agencies including DHS, USPS and the U.S. Census Bureau. William holds a Bachelor's Degree in History and Political Science from Guilford College and a Master of Science in Information Technology and Management from the University of North Carolina at Greensboro.

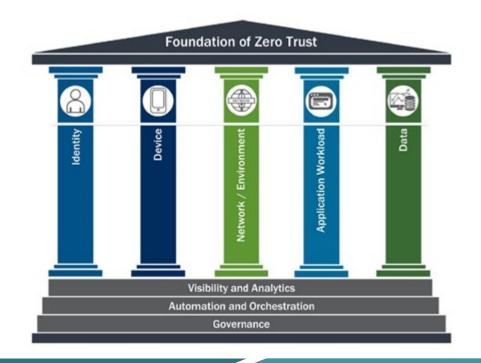
Jessica Kleinman


Jessica Kleinman has over 4 years of experience providing decision support for several defense agencies as well as DHS CISA. She has experience in cost estimating, budget analysis, data warehouse development and maintenance, and program management support. She holds a Bachelor's Degree in Economics from Georgia College & State University.

Why is Cyber Cost Important?

Technomics

- Recent high-profile incidents have led to significant remediation costs and produced reputational damage – and the number of incidents is growing
- These incidents drove federal and private-sector organizations to invest in protection against future attacks
- At the same time, costs of cybersecurity particularly in the development phase are not well defined


Emerging Cyber Initiatives

- New cyber best practices emphasize earlier, more proactive approaches to cybersecurity:
 - Increased authentication (Zero Trust Architecture ZTA)
 - Emphasis on secure development and configuration (Secure by Design)
- Understanding these trends is important to evaluating the scope of a program's security requirement

Zero Trust Architecture

- Zero Trust: an authentication paradigm that requires continued re-authentication of all assets on a network
- Evolution from prior perimeter-based "implicit trust" model to a "trust, but verify" approach:
 - Perimeter: a logical boundary within which a particular security policy is applied
 - **Trust, but Verify**: all items, including those within a network, have the potential to be compromised

Secure by Design

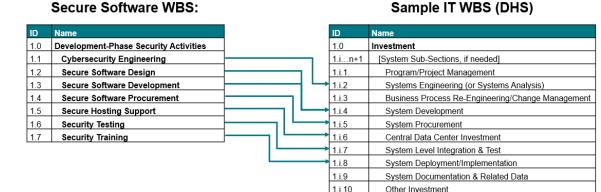
- A posture that emphasizes correcting cybersecurity vulnerabilities as a built-in requirement for new software development
- Paradigm- and platform-agnostic
- Common tasks include application hardening and secure default settings
- Limits on programming languages to prevent memory safety vulnerabilities

Challenges in Cost Estimating

- New initiatives = minimal historical cost data
- Lack of common estimating structures
- For cybersecurity cost methodology to improve, requirements must be better defined, and more cost data must be collected

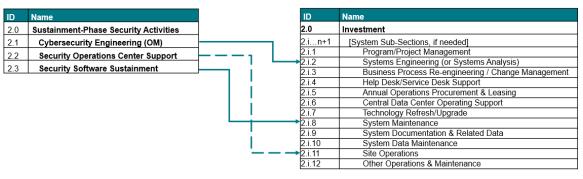
SSDF Intro

- Secure Software Development Framework (SSDF), produced by National Institute for Standards and Technology (NIST)
- Identifies secure software development practices throughout the Software Development Life Cycle (SDLC)
- Considered an authoritative source for development phase cybersecurity practice, particularly for Secure by Design


SSDF Category	SSDF Definition	Generalized WBS Crosswalk
Prepare the Organization	Prepare people, processes, and technology to perform secure	Systems Engineering, System
(PO)	software development at organization level.	Development, System Procurement,
		Training
Protect the Software (PS)	Protect all components of software from tampering and	System Development, Data Center
	unauthorized access.	Support
Produce Well-Secured	Produce well-secured software with minimal security	System Development, System
Software (PW)	vulnerabilities in releases.	Procurement, Testing
Respond to Vulnerabilities	Identify residual vulnerabilities in software releases and	Sustainment-Phase Systems Engineering,
(RV)	respond appropriately to address and prevent recurrence.	SOC Support

Secure Software WBS

- Adapted from NIST SSDF, to accommodate standard product-oriented software development and sustainment Work Breakdown Structure (WBS)
- Sample IT WBS in crosswalk represents WBS developed by Department of Homeland Security (DHS) Cost Analysis Division (CAD)


Development:

Sustainment

Secure Software WBS:

Sample IT WBS (DHS)

Secure Software WBS

ID	Name	Source Crosswalk
1.0	Development-Phase Security Activities	Roll-Up
1.1	Cybersecurity Engineering	Roll-Up
1.1.1	Security Requirements Definition	SSDF PO.1.1, PO.1.2, PO.1.3
1.1.2	Determine Roles and Responsibilities	SSDF PO.2.1, PO.2.3
1.1.3	Determine Supporting Toolchains	SSDF PO.3.1
1.1.4	Define Security Check Criteria	SSDF PO.4.1
1.2	Secure Software Design	Roll-Up
1.2.1	Risk Analysis and Mitigation	SSDF PW.1.1, PW1.2, PW.1.3
1.2.2	Independent Verification and Validation	SSDF PW.2.1
1.3	Secure Software Development	Roll-Up
1.3.1	Software Security Check Development	SSDF PO.4.2.
1.3.2	Implement and Configure Toolchains	SSDF PO.3.2, PO.3.3
1.3.3	Secure Source Code	SSDF PW.5.1, PW.7.1, PW.7.2
1.3.4	Software Code Protection	SSDF PS.1.1, PS.1.2
1.3.5	Develop Secure Software	SSDF PW.4.2
1.3.6	Configure Compile-Interpret-Build Tools	SSDF PW.6.1, PW.6.2
1.4	Secure Software Procurement	Roll-Up
1.4.1	Commercial Security Software Purchases	SSDF PW.4.1, PW.4.4
1.4.2	Secure-by-Default Configuration	SSDF PW.9.1, PW.9.2
1.4.3	Security Hardware Appliances	SSDF PW.4.1, PW.4.4

ID	Name	Source Crosswalk
1.5	Secure Hosting Support	Roll-Up
1.5.1	Secure Environment and Endpoints	SSDF PO.5.1, PO.5.2
1.5.2	Release Archiving	SSDF PS.3.1, PS.3.2
1.6	Security Testing	Roll-Up
1.6.1	System Security Testing	SSDF PW.8.1. PW.8.2
1.7	Security Training	Roll-Up
1.7.1	Security Training	SSDF PO.2.2
2.0	Sustainment-Phase Security Activities	Roll-Up
2.1	Cybersecurity Engineering (OM)	Roll-Up
2.1.1	Ongoing Security Assessments	SSDF RV.1.1., RV.1.2
2.2	Security Operations Center Support	Roll-Up
0.04	Monitoring Support (Threat Hunting and	
2.2.1	Assessment)	SSDF RV1-3
2.2.2	Incident Support (Incident	
	Response/Recovery)	SSDF RV1-3
2.2.3	Threat Information Data	
	Acquisition/Subscription	SSDF RV1-3
2.3	Security Software Maintenance	Roll-Up
2.3.1	Security Software Sustainment	SSDF PW.4.1, PW.4.4
2.3.2	Security Hardware Sustainment	SSDF PW.4.1, PW.4.4

Practical Application Intros

- Sufficient data does not yet exist for detailed methodology and Cost Estimating Relationship (CER) development
- Hypothetical case studies are displayed to illustrate how WBS is applied to cybersecurity cost categories
- WBS is summarized at Level 2, assume similar methodology applies at lower levels except where otherwise noted

Case Study Application

Case Study 1

- Shipment tracking system for a logistics agency
- New software development to Secure by Design standards
- Cloud hosting environment, with stand-alone Security Operations Center (SOC)
- Requirements documentation, such as an Operational Requirements Document (ORD) or Concept of Operations (CONOPS) available for functional size
- A similar (albeit smaller) program was completed by the organization with cost data available

Iechnomics

Case Study 2

- Federal organization IT asset management system in sustainment
- Currently upgrading from perimeter-based architecture to Zero Trust architecture
- Along with Zero Trust development, assess routine processes for security vulnerabilities
- System size in Equivalent Source Lines of Code (ESLOC) and operating costs are known, along with ZTA development costs for other systems in organization

WBS 1.1 – Cybersecurity Engineering

- Early-stage efforts associated with assessing the security requirements for a secure software development effort
- Primary driver is labor, best measured by security team size and frequency of Authority to Operate (ATO) renewal

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Pre-design assessments to understand scope of	Primary: use scaled analogy data from prior
	requirements needed to incorporate ZTA and	program to estimate cyber engineering team size.
	Secure by Design approaches into development.	Secondary: quantify security requirements from
	Criteria may be indicated in a program	CONOPS/FRD, including frequency of ATO/security
	Requirements document.	renewals.
Case Study 2	Primary effort involves engineering for ZTA	Primary : adjust staff costs current security team to
	optimization. Secondary efforts include proactive	include expanded scope or ZTA development.
EO ,	assessment of system for additional vulnerabilities.	Secondary: quantify security requirements from
	Any additional vulnerabilities are flagged for	CONOPS/ORD, including frequency of ATO/security
	subsequent Design/Development sections.	renewals.

WBS 1.2 – Secure Software Design

- Efforts to design software that is well-secured and proactively addresses potential vulnerabilities
- Includes cyber risk analysis and Independent Verification and Validation (IV&V) activities

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Design of how security requirements identified in	Primary: use results from Cyber Engineering
	Cybersecurity Engineering category can be	assessment activities, including number of identified
	integrated into broader design and architecture of	vulnerabilities.
	the system.	Secondary: use system size as measured by
		Function Points (FP) and number of interfaces for
		scaled analogy.
Case Study 2	Redesign of existing system components,	Primary: use results from Cyber Engineering
	determination of ZTA boundaries.	assessment activities, including number of identified
		vulnerabilities.
		Secondary: se system size as measured by
		Function Points (FP) and number of interfaces for
		scaled analogy.

WBS 1.3 – Secure Software Development

- Includes software development effort that involves modifying the code of the system.
- Does not include Commercial Off-The-Shelf (COTS) software license costs (in WBS 1.4)

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Develop security functionality as part of broader	Primary: output from Cyber Engineering
	application development process.	assessment activities used for Secure Software
		Design, with any additional effort added from Risk
		Assessment/IV&V.
		Secondary: use system size as measured by
		Function Points (FP) and number of interfaces for
		scaled analogy.
Case Study 2	Primary effort includes development and integration	Primary: use results from Cyber Engineering
	of new functionality for ZTA. Secondary effort	assessment activities used for Secure Software
	includes execution of any vulnerability remediation	Design, with any additional effort added from Risk
	flagged in Cybersecurity Engineering category.	Assessment/IV&V.
		Secondary: use system size as measured by
		Function Points (FP) and number of interfaces for
		scaled analogy.

WBS 1.4 – Secure Software Procurement

 Includes purchase, configuration, and integration of Commercial Off-The-Shelf (COTS) security software

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Purchase of new COTS licenses for cybersecurity	Primary: determine license criteria for Cost-per-
	functions (Authentication, Encryption, Monitoring,	License estimate. Potential drivers include number
	Intrusion Protection). New development effort	of users, number of servers, number of
	assumes 0 pre-existing licenses available.	endpoints/connections, dependent on vendor pricing
		structure.
		Secondary: number of system users
Case Study 2	Purchase of new COTS license types and increased	Primary: determine license criteria for Cost-per-
	quantity of existing licenses. For ZTA, heavy focus	License estimate for any new licenses. Potential
	on authentication software such as Single Sign On	drives include number of users, number of servers,
	(SSO) and Multi-Factor Authentication (MFA).	number of endpoints/connections, dependent on
		vendor pricing structure.
		Secondary: use number of users for scaled
		analogy for prior programs that completed ZTA re-
		architecture.

WBS 1.5 – Secure Hosting Support

- Represents security-related efforts needed to secure a hosting environment, harden endpoints, and perform related security tasks
- Most potential costs apply to both on-premise and cloud hosting platforms

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Additional labor during hosting stand-up to ensure	Primary: determine based on hosting size data,
	that hosting environment and endpoints are set up	such as number of servers, processing cores,
	and configured securely.	and/or virtual machines.
		Secondary: number of system users
Case Study 2	Minor re-configuration of environment, assumes	Minimal direct cost assumed, but hosting footprint
	limited "new" effort needed.	may need to expand to host new security software
		beyond expected hosting growth.

WBS 1.6 – Security Testing

- Represents integration and testing activities conducted to validate a system's compliance with security requirements
- Includes design and performance of security tests, including those needed to obtain initial Authority to Operation (ATO)

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	All applicable security test events conducted, with	Primary: using Test Plan or similar documentation,
	issues adjudicated by development team.	assume number of cybersecurity test cases drives
		security testing cost.
		Secondary: leverage analogous cyber testing data
		or use system sizing estimate and analogous
		system testing factor.
Case Study 2	Testing of any changes made in Development	Primary: number of test cases if Testing Plan is
	process to ensure no inadvertent damage to	available.
	functionality or system security.	Secondary: extrapolate from past actuals, adjust to
-		accommodate adds, removals, and changes to
		security testing made during ZTA development.

WBS 1.7 – Security Training

Represents effort required to develop and conduct role-based security training

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Develop and conduct training for any new user roles	Primary: number of training products needed for
	created by the new system.	security-related training curriculum. Determine if
		using in-person Instructor Led Training (ILT),
		webinar, or video training.
		Secondary: number of system users
Case Study 2	Likely no need training events, other than process	Minimal direct cost assumed but determine if
	knowledge for end-user Help Desk (not in scope)	training module updates exceed normal training
	and Security Operations Center (SOC) (possibly in	update effort.
	scope).	

WBS 2.1 – Cybersecurity Engineering (OM)

 Represents sustainment phase security systems engineering effort, including Authority to Operate (ATO) renewal

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Sustainment-phase security engineering activities,	Primary: measure frequency of ATO/security
	including operational security assessments and	renewals.
	renewal of system ATO.	Secondary: use scaled analogy data from prior
		program to estimate cyber engineering team size.
Case Study 2	Sustainment-phase security engineering activities,	Primary: measure frequency of ATO/security
	including operational security assessments and	renewals.
	renewal of system ATO.	Secondary: use scaled analogy data from prior
		program to estimate cyber engineering team size.

WBS 2.2 – Security Operations Center Support

- Represents efforts required to support Security Operations Center (SOC) activities
- Includes monitoring, incident support, vulnerability assessment, and related efforts

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Stand-up of program SOC support for proactive	Primary : number of incidents and/or support tickets
	(monitoring and assessment of potential threats)	from analogous program.
	and reactive (incident response and recovery)	Secondary: number of system users
	functions.	
Case Study 2	Likely few changes unless authentication	Primary: collect cost drivers used by enterprise
	management creates additional scope.	SOC (i.e., users, servers, and/or T-shirt sizing) and
		adjust charge if needed.
		Secondary: scaled analogy from other systems that
		completed ZTA update to determine amount of labor
		needed.

WBS 2.3 – Security Software Maintenance

- Represents annual maintenance and license renewals associated with items purchased or maintained by system
- Should include all license purchased in WBS 1.4 (Secure Software Procurement) along with preexisting security software COTS licenses

Case Study	Relevant Program Activities	Proposed Estimating Methodology
Case Study 1	Annual maintenance of any COTS products	Primary: leverage Cost-per-License metrics used in
	purchased in "Secure Software Procurement"	Secure Software Procurement, with applicable
	category.	renewal costs in place of procurement.
		Secondary: number of system users
Case Study 2	Include any additional COTS license purchases in	Primary: leverage Cost-per-License metrics used in
₽ ₽	assumptions for annual sustainment and	Secure Software Procurement, with applicable
	subscription fees.	renewal costs in place of procurement.
		Secondary: number of system users

Limitations

- Lack of historical data for emerging security efforts (namely Zero Trust and Secure by Design)
- Cyber engineering/assessment may prove particularly hard to quantify and estimate in early stages
- Cybersecurity is rapidly evolving, and a WBS will require constant updates to stay current
- Scope confined to information systems, more customization would be needed for systems with embedded hardware or other specialized applications

Conclusions and Next Steps

- Secure Software WBS developed to de-mystify cybersecurity landscape and standardize how estimators track cyber costs
- Future research should build on common structure to collect data and generate CERs
- Future research should also consider application to specialized systems beyond information systems

Questions/Answers

