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Abstract 
Size and productivity are commonly cited as the two major software development cost 

drivers. Logic dictates that the two are related and inversely correlated. But what is the 

probabilistic range of uncertainty for productivity, given a software size? What is meant 

by “an 80% confidence level for productivity”? Cost analysts often quantify uncertainty 

with an S-Curve; why can’t this be done for productivity directly? We use International 

Software Benchmarking Standards Group (ISBSG) data to estimate the distribution of 

productivity directly and provide closed-form formulas for the fitted distribution(s). We 

find that productivity (and, with certain assumptions, cost) can be estimated with an S-

Curve directly, using built-in Excel formulas, with no need for Monte Carlo simulation. 

This result has significant implications for almost any software development cost 

estimate and is particularly relevant to agile development efforts where time-boxed 

effort is generally fixed. 

 

Keywords: Agile, Risk, Software, Uncertainty, Productivity, Probability Distribution, S-

Curve, Monte Carlo 
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Introduction 
Software productivity is an important concept in any software development estimate. It 

is sometimes specified as a direct input and sometimes included implicitly through other 

inputs. Regardless of how it is treated, the estimating community will benefit from a 

better understanding of the risk and uncertainty associated with productivity. A complete 

analysis of this topic requires that estimators understand risk and uncertainty within the 

components of productivity, productivity calculations, as well as the final software 

development estimate. 

This paper evaluates the most common methods estimators currently use to address 

productivity, and presents an alternative approach that will: 

• Improve the accuracy of software development estimates by presenting an 

alternative way of incorporating productivity. 

• Improve the cost risk and uncertainty analysis of software development 

estimates by better modeling productivity uncertainty. 

Background 
We begin with a discussion of the key concepts associated with productivity. We then 

explore the most used methods for including it in software development estimates. 

Software Productivity as a Concept 
Along with size, productivity is one of the two main cost drivers for software 

development. Software size measures the quantity of software that must be developed. 

Productivity measures the efficiency of development, which is driven by software 

complexity as well as development team capability. 

A more general definition of productivity is the ratio of the effort associated with unit of 

output to a unit of input. This concept applies in the world of software development. If 

we wish to define productivity using this general concept, we consider output divided by 

input. For example, software size (measured in complexity-Adjusted Function Points 
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(AFP)) divided by productivity (measured in AFP per man-hour) will result in an effort 

estimate measured in man-hours. 

All the different methods of measuring productivity used by the cost community share 

the general concept of measuring the ratio of output to input. However, estimators 

sometimes measure productivity as effort divided by size. For example, project delivery 

rate (PDR) measures man-hours per software sizing metric. In this case, PDR is the 

multiplicative inverse (reciprocal) of our standard productivity definition and used in 

effort estimation by multiplying size by PDR. 

In this paper, we define productivity as size divided by effort. This is consistent with the 

general definition and follows an intuitive principle that higher productivity should result 

in less effort and therefore less cost. 

Methods for Estimating Software Productivity 
Just as there are many ways to estimate software development, there are many ways to 

measure and estimate productivity. These methods can be grouped into two logical 

categories: productivity as an input and productivity as an output. 

Productivity as an Input 
When productivity is measured as an input, it is used in an estimating equation as an 

input variable. The most common examples of productivity as an input include: 

• Assumed factor. In this method, the estimator uses a published productivity 

factor. For example, if a function point count of 350 Function Points (FP) is 

obtained, then the estimator might use the following figure1 to obtain 

productivity: 

 

 

 

1 Beckett, Donald, An Analysis of Function Point Trends, https://www.qsm.com/articles/analysis-function-
point-trends 
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Figure 1: Productivity as an Input Using an Assumed Factor 

For 350 FP, the median productivity is 9.55 function points per person-month (FP/PM). 

Assuming 152 working hours per month2, this corresponds to hourly productivity of 

9.55/152 = 0.0628 FP/hour. Effort, in hours, is then estimated by calculating 350 divided 

by 0.0628. 

• Analogy. In this method, the estimator obtains productivity from an analogous 

software project. For example, the ISBSG database3 offers a way of filtering a 

large database of software projects, based on the selection of characteristics 

that are most analogous. The database can be filtered based on industry, year 

of project, application group, development type, and many other variables. 

Once the most analogous project is found, the estimator can look up that 

project’s productivity and use it in the estimate4. 

• Database average, median, or midpoint. In this method, the estimator uses a 

database of many projects and calculates productivity based on a measure of 

central tendency, such as the average (arithmetic mean). For example, the 

 

 

2 This is the Constructive Cost Model (COCOMO) standard. 
3 International Software Benchmarking Standards Group, https://www.isbsg.org 
4 ICEAA CEBoK-S, Lesson 4: Estimating the Cost of Custom Software Development, slides 52-61 
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ISBSG database could be filtered to obtain multiple analogous projects, which 

the analyst uses to calculate an average productivity. 

In each of the above methods, productivity is a direct input to the estimating equation. 

Productivity as an Output 
Productivity may also be viewed as an output. In these examples, an estimating 

equation is used but productivity is not a direct input. Instead, the estimator uses 

alternative ways of measuring software complexity and developer capability. For 

example: 

• Effort Multiplier (EM) Factors in the Constructive Cost Model (COCOMO). In 

the COCOMO II model5, a software project is rated using 15 attributes, known 

as EMs. The product of the EM ratings is used, along with software size and a 

measure of economy or diseconomy of scale/size to derive an effort estimate. 

Productivity can then be calculated post-hoc using the standard metric of effort 

divided by size.  

• Custom Effort Estimating Relationship (EER). In this method the analyst starts 

with a database of analogous software projects that includes actual size and 

effort for each project. The analyst uses statistical techniques such as linear 

regression to derive a relationship between size and effort. The resulting 

equation may not contain an independent variable for productivity. However, 

productivity can still be calculated using size divided by effort. 

• Effort Estimating Tool. There are several cost estimating tools that require the 

cost analyst to input software development characteristics. These tools then 

produce an effort estimate based on a combination of data and relationships. 

For example, the basic COCOMO estimating equation relates size to effort 

 

 

5 Constructive Cost Model, https://en.wikipedia.org/wiki/COCOMO 
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directly. In addition, the Technomics Software Effort Estimating Tool (SWEET)6 

uses ISBSG data to create a customized EER based on a limited set of inputs. 

In each of these estimating methods, productivity is an inherent part of the approach. 

However, it is not directly input to the estimating equation. Therefore, productivity 

metrics must be obtained as an output, by dividing size by effort. 

Summary of Productivity Measurement Methods 
It is important to note that regardless of which estimating method is used, the concept of 

productivity is always present. Further, because productivity is never precisely known in 

advance, there is always associated risk and uncertainty. Therefore, it is important to 

consider not only how each method handles productivity, but also how each method 

handles risk and uncertainty. The following table summarizes this concept: 

Table 1: Typical Treatment of Uncertainty by Productivity Estimating Method 

Estimating 
Method Treatment of Productivity Typical Treatment of Uncertainty 
Assumed 
Factor 

Input, based on published rule of 
thumb None or plus or minus 10%* 

Analogy Input, based on selection of an 
analogous project None or plus or minus 10%* 

Database 
Average 

Input, based on an average of 
analogous projects 

None, plus or minus 10%, or calculated 
standard deviation* 

COCOMO Output, based on EM factors Not included in the basic equation* 

Custom EER Output, based on input variables Calculated using standard error of the estimate, 
using an assumed distribution 

EER Tool Output, based on input variables Available only if included in the tool 
* Note: In each of the input-based methods, the analyst may be able to address 

uncertainty using a Monte Carlo analysis. This requires the analyst to have an 

uncertainty distribution for each input and access to a tool (e.g., Excel and Crystal Ball) 

that enables Monte Carlo analysis. 

 

 

6 Dynamic Software Effort Estimation, Gellatly/Jones/Wekluk/Brown/Braxton, 
https://www.iceaaonline.com/wp-content/uploads/2022/06/SA07-Gellatly-Paper-Dynamic-Software-Effort-
Estimation.pdf 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



6 

Software Size and Effort 
Because productivity is composed of size and effort, we first explore each of these 

variables, and address the risk and uncertainty in each. 

Size 
Size is a measure of the quantity of software developed. There are various ways an 

analyst may quantify and measure software size. The longest-standing method is 

source lines of code (SLOC). In a SLOC-based size estimate, the number of lines of 

delivered code are counted. Comment and blank lines are usually omitted. A variant of 

SLOC, known as equivalent source lines of code (ESLOC) adjusts the SLOC number 

down, based on the amount of reused, adapted, converted, auto-generated, and 

otherwise modified code7. 

While SLOC and ESLOC have a long history, alternative methods have more recently 

been devised. These address two fundamental problems with SLOC: (1) It is easy to 

count for delivered code, but hard to predict for planned projects; and (2) Modern 

software development uses visual tools and techniques that are not driven by SLOC. 

A frequently used alternative to SLOC sizing is Function Point Analysis (FPA). This 

method is defined by the International Function Point Users Group (IFPUG)8 and others. 

FPA benefits include estimation earlier in the software life cycle, direct connection to 

requirements, and technology and platform independence. The data and analysis in this 

paper use FPA as the sizing metric. This is consistent with modern software estimating 

techniques and offers the largest dataset that contains both size and effort data. 

Because it is impossible to precisely know software size for a planned project, we need 

to address uncertainty within the size metric. To begin, we analyze the ISBSG 

database. This dataset, which is more thoroughly introduced in the following section, 

 

 

7 ICEAA CEBoK-S, Lesson X: Software Size, slides 11-27 
8 https://ifpug.org/ 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



7 

offers many projects that have reported size using IFPUG 4+ sizing9 and AFP. We 

selected IFPUG 4+ AFP as our preferred sizing metric because (1) it is complexity-

adjusted and (2) the selection provides the largest possible dataset among the 

functional sizing methods. The following table shows ISBSG summary statistics on 

IFPUG 4+ AFP projects: 

Table 2: Descriptive Statistics of AFP-Denominated Size in the Dataset (n=1,675) 

Statistic Size 
Mean 128.5 
Median 87.0 
StDev 126.1 
Skewness 0.988 
CV 98% 
Min 7 
Max 2,048 

 

One thing to note from this data is the high coefficient of variation (CV) value. The CV of 

approximately 100% indicates a high level of variability in the data: the standard 

deviation and mean are approximately equal. Additionally, the distribution of size is 

right-skewed. This is also evident in Table 2, which shows a skewness value of 0.988 

(positive skewness values indicate right-skew). 

Effort 
The second component of productivity is effort. This metric is simply the number of 

man-hours required for software development. In our data, we use effort that includes 

work to design, build, test, and implement the software, because these are the “core” 

activities in ISBSG—and the activities for which the dataset is most complete. We 

exclude hours reported for other activities such as planning and specification. 

Using the same ISBSG dataset, we find the following summary statistics on effort: 

 

 

 

9 IFPUG 4+ sizing refers to the version of the published Function Point Counting Practices Manual. The 
current version is 4.3.1. 
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Table 3: Descriptive Statistics of Effort Hours in the Dataset (n=1,675) 

Statistic Effort 
Mean 1,744 
Median 1,165 
StDev 2,103 
Skewness 0.826 
CV 121% 
Min 0 
Max 35,063 

 

Consistent with the size data, we see a high CV value, indicating a high level of 

variability in the data. A combined graph showing the frequencies of size and effort (akin 

to Probability Density Function (PDFs)) is shown in the figure below. 

 
Figure 2: Frequencies of Size and Effort by Bin Percentile 

The graph uses the concept of binned data, which is discussed in greater detail later in 

this paper. To create the graph, we separated the size and effort data into 53 evenly 

spaced intervals, or “bins.” The lowest size bin contains the lowest 1/53rd of the size 

data, and ranges from 0 to 38.6 AFP. Similarly, the lowest effort bin contains the lowest 

1/53rd of the effort data, and ranges from 0 to 661.6 effort hours. The bin percentile of 

this lowest bin, in both cases, is 1/53, expressed as a percentage (about 1.89%). The 
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graph plots the frequencies (counts) of size and effort data by bin percentile, for each of 

the 53 bins.  

The graph shows that the distributions of size and effort are positively correlated and 

are each right-skewed. This result is not surprising. We expect size and effort to be 

highly correlated. In other words, large projects require a large amount of effort, 

whereas small projects require a small amount of effort. Because size and effort are 

positively correlated, it is not immediately obvious what the distribution around 

productivity would be. For example, if size and effort were perfectly correlated and 

proportional, then we would see only a single productivity number with no uncertainty. 

On the other hand, productivity as a random variable combines variance from two other 

random variables. In situations like this, uncertainty can compound, rather than 

diminish. In general, there is no closed-form formula for the variance of a ratio. It can 

only be approximated10.Therefore, both the variance and nature of the distribution 

around productivity are difficult to predict. We start our exploration of this topic in the 

next section, with the same summary statistics on productivity. 

Initial Analysis of Productivity 
Using our standard definition of productivity (size divided by effort), we begin by 

calculating productivity on our dataset by taking AFP size and dividing by effort man-

hours. The results can also be reported using summary statistics: 

Table 4: Descriptive Statistics of Productivity in the Dataset 

Statistic Productivity (AFP/MH) 
Mean 0.1369 
Median 0.0876 
StDev 0.1601 
Skewness 0.923 
CV 117% 
Min 0.0031 
Max 2.0667 

 

 

10 https://www.stat.cmu.edu/%7Ehseltman/files/ratio.pdf. The approximation can be written as: 
Var (S/E) ≈ (µs/µe)2 [(µs/σs)2 + (µe/σe)2 – 2Cov(S,E)/(µsµe)], where S represents size and E represents effort. 
This form makes clear the positive correlation between the covariates lowers the variance of their quotient, 
but their contributions are otherwise additive. 
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Interestingly, the CV of 117% indicates more variance than seen in the size data. 

Although less than the effort data CV, it again indicates a high level of variability in 

productivity. The following sections further explore this concept. We will use analysis to 

answer questions such as: 

• How much variance is present in productivity data? 

• What probability distribution should be used to model productivity? 

• What distribution parameters best fit our data? 

We start by looking deeper into the distribution of productivity data and discussing 

expected results. 

Expected Distribution of Productivity 
Due to the uncertainty associated with size and effort addressed in the previous section, 

we expect productivity to also contain a high level of uncertainty. Therefore, this 

necessarily leads to an important conclusion: 

Software development productivity should never be treated as a known variable. It must 

always contain a measure of uncertainty. 

In the following sections, we further explore our productivity data. 

Background 
We have defined Productivity11 as a stochastic variable, expressed as a fraction, 

quotient, or ratio. The numerator and denominator (Size and Effort, respectively) of the 

fraction are themselves stochastic. This setting describes a Ratio Distribution12. If X and 

Y are random variables, then the Z variable follows a Ratio Distribution. 

 

 

11 Capitalization of terms such as “Size,” “Effort,” and “Productivity” denotes random variables with those 
respective names. For example, we model software size by with a Size variable that follows a certain 
distribution. 
12 https://mathworld.wolfram.com/RatioDistribution.html 
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𝑍𝑍 = 𝑋𝑋/𝑌𝑌 

There is a significant body of literature on Ratio Distributions. Specifically, if X and Y are 

independent, zero-mean Normal random variables, then Z follows a Cauchy 

distribution13, which is difficult to characterize. In fact, the Cauchy distribution has no 

defined mean or variance, and is sometimes called a pathological distribution14. Under 

certain assumptions, Cauchy distributions can be approximated in Microsoft Excel. 

However, in this context, there is reason to believe that Size and Effort are each right-

skewed (non-normal), and positively correlated with each other: 

Table 5: Descriptive Statistics for Size, Effort, and Productivity 

Statistic Size Effort Productivity 
Mean 128.5 1,744 0.1369 
Median 87.0 1,165 0.0876 
StDev 126.1 2,103 0.1601 
Skewness 0.988 0.826 0.923 
CV 98% 121% 117% 
Min 7 48.54 0.0031 
Max 2,048 35,063 2.0667 

 

 

13 https://en.wikipedia.org/wiki/Cauchy_distribution 
14 http://www.math.nagoya-u.ac.jp/~richard/teaching/s2019/Cauchy_Distribution.pdf 
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Figure 3: Scatterplot of Size (AFP, x-axis) vs. Effort (Hours, y-axis) 

In Table 5 above, there is a strong positive skewness for both Size and Effort. 

Moreover, Figure 3 demonstrates a positive correlation between Size and Effort: the 

correlation is 100.00% (to two decimals). Therefore, our setting is more complex than 

the Cauchy setting.  

It is easy to think of real-world applications of other Ratio Distributions like ours. For 

example, the Price to Earnings (P/E) ratio of a stock is the quotient of two non-normal, 

right-skewed15, positively correlated variables. Similarly, cost analysts often are 

concerned with Return on Investment (ROI) for specific initiatives, where Return and 

 

 

15 Right-skewness of stock prices and earnings follows from their general upward trend, and the fact that 
both are generally bounded at the low end, but not the high end. The fact that the two are positively 
correlated is well-established. 
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Investment are likely right-skewed and positively correlated with each other16. At least 

one analyst has observed that P/E ratios appear to follow a lognormal distribution17. 

Beyond the lognormal, which distributions are good candidates to approximate the ratio 

of size and effort? 

Candidate Distributions 
Although size and effort are each right-skewed, it’s unclear initially that productivity 

should be right-skewed. Cost risk analysis consistently tells us that unfavorable (higher 

cost) outcomes are more likely than favorable ones. Thus, size and effort should be 

right-skewed, as we saw earlier. 

However, higher productivity values are associated with favorable outcomes. Extreme 

events associated with unfavorable outcomes should be associated with lower 

Productivity, and therefore, left skew. The Beta distribution can accommodate almost 

any shape or skewness. Its versatility in this regard makes it a good candidate to 

attempt to “fit” to our productivity data. Cost analysts have proposed Beta distributions 

previously in the context of S-curves and time-phasing18. 

Cost analysts have also long proposed that Weibull distributions fit time-phased data 

better than traditional Earned Value Management (EVM)-type metrics. These analyses 

include fitting of Cumulative Distribution Functions (CDFs, or S-Curves) of both total 

cost and total duration. The seminal work in this regard is Peter Norden’s (1963) 

discovery that software development costs’ time-phasing generally follows a Rayleigh 

distribution. This work was so influential that Rayleigh distributions are often referred to, 

 

 

16 There is a similar logic here. In general, higher Investments lead to higher absolute Returns. 
Meanwhile, Investment cannot be negative, and Returns tend to compound over time, implying an 
asymmetric distribution. 
17 https://stats.stackexchange.com/questions/46141/what-is-the-distribution-that-can-properly-describe-
the-pe-fluctuation-of-a-stoc 
18 Brown, White, Ritschel, and Seibel. Time-Phasing Aircraft R&D Using Beta and Weibull Distributions. 
Journal of Cost Analysis and Parametrics (2020.) https://www.iceaaonline.com/jcap2015-1096219/.  
 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

https://www.iceaaonline.com/jcap2015-1096219/


14 

even today, as Norden-Rayleigh19 distributions or curves20. Dr. David Lee’s Rayleigh 

Analyzer21 subsequently brought this idea into the cost analysis mainstream. Weibull 

distributions are generalizations of Rayleigh distributions; cost analysts continue to 

promote their use. In fact, we found at least seven ICEAA papers or training sessions 

studying the use of Weibull distributions to characterize cost and schedule data. One 

such session even referred to the Weibull distribution as “Gumby,” presumably because 

it can bend or contort to fit almost any shape22. 

In any study of CDFs or S-Curves, we must include the two typical S-Curve 

distributions: Normal and Lognormal. In fact, these are the only S-Curve distributions 

one can select in the Naval Center for Cost Analysis (NCCA) S-Curve tool23. 

Finally, cost analysts often rely on Expert Opinion to estimate uncertainty parameters 

for cost-driving input variables. The most common of these characterizations is called 

Three Point Estimating, wherein a Subject Matter Expert (SME) specifies a Low, Most 

Likely, and High value for the parameter. Those three points then become the basis of a 

Program Evaluation Review Technique (PERT) Beta, or more commonly, a Triangular 

distribution. Because PERT Beta distributions are approximations of the Beta 

 

 

19 The discovery of Rayleigh distributions is attributed to the true forefather of this work, Lord Rayleigh 
(1877), predating both the discovery of the Weibull generalization (1933) and Norden’s work (1963). 
 
20 See, for example, Jones, Alan. Norden-Rayleigh Curves for Solution Development. 
https://www.taylorfrancis.com/chapters/mono/10.4324/9781315160030-2/norden-rayleigh-curves-
solution-development-alan-jones 
 
21 Lee, Dr. David A. The Rayleigh Analyzer. Logistics Management Institute (LMI) (1999).  
https://apps.dtic.mil/sti/tr/pdf/ADA371359.pdf.  
 
22 Stouffer (LMI, 2009) (using Weibull distributions to model failure rates); Rudolph (Technomics, 2010), 
touting the benefits of a “Weibullnator” tool to forecast ship construction costs; Garcia (MCR, 2013), using 
Weibull distributions to time-phase ground-based radar costs; Burgess, Smirnoff, and Wong (NRO, 2014), 
using Weibull distributions to time-phase space launch system costs; Lee, DeZwarte, Sigalas-Markham, 
and Eckhause (LMI, 2014), rejecting Weibull distributions in favor of “parsimonious” distributions; Hawpe 
and Mender, who referred to Weibull-related efforts as Modeling with Gumby, finding that they fit the data 
well but have little predictive power (NCCA, 2017); and the aforementioned paper by Brown et al (2020). 
All of these papers are available at https://www.iceaaonline.com/archives/ 
 
23 https://www.dau.edu/index.php/tools/s-curve-tool-risk-uncertainty-analysis 
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distributions we are already considering, we did not consider them separately. However, 

in accordance with this common practice, we considered modeling productivity with a 

Triangular distribution. 

Choosing the Best-Fitting Distribution(S) 
The following sections describe the methods we used to calculate the best fitting 

parameters for each distribution.  

Methods of Specifying Distributional Parameters 
Once we have selected a set of candidate distributions, we must specify a method for 

characterizing their parameters. After all, we cannot consider every possible Beta 

distribution, every possible Weibull distribution, etc. Broadly speaking, there are three 

ways to specify these parameters: 

1. Maximum Likelihood Estimation (MLE),  

2. Method of Moments (MoM), and 

3. Fitting to a data set via minimization of a penalty function. 

Maximum Likelihood Estimation (MLE): This method refers to creating the likelihood 

function associated with each distribution, then finding the parameters that maximize it. 

We did not use MLE in this analysis, because it was more efficient to fit the distributional 

parameters to the data directly than to create likelihood functions for each distribution. 

We are confident that use of MLE would not significantly change the results. 

Method of Moments (MoM): This method refers to assuming a distribution and using the 

sample statistics of a data set to imply its parameters. For example, one could assume 

that productivity follows a normal distribution, whose mean and standard deviation are 

the mean and standard deviation of the sample data. As cost analysts often follow this 

convention, one of the distributions we tested is called “Normal (MoM).” This refers to 

the normal distribution implied by MoM estimators. 

Fitting via a Penalty Function: This method refers to using the best-fitting distributional 

parameters based on minimization of a “penalty function”. This is similar to the manner 

in which the Ordinary Least Squares (OLS) regression routine finds the best-fitting slope 
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and y-intercept of a line based on minimization of Sum of Squared Errors (SSE). This is 

the primary method that we used—we applied it to each distribution we tested. The 

specifics of the distribution-fitting routine are discussed in the next subsection. 

Stratification and Binning of Data 
As previously discussed, we stratified the data based on size. Within each stratum, it is 

necessary to further “bin” the data. Why? Productivity is a continuous random variable 

that could take on infinitely many values. Therefore, the probability that Productivity will 

take on any particular value is zero. For continuous random variables, we can refer to 

probability, likelihood, or frequency, only for ranges of values. But how do we create 

these ranges, or bins? Is there an optimal “width” of each bin? 

Many rules for binning data have been proposed. Some of them include: 

1. Scott’s Rule24  

2. Sturge’s Rule25 

3. Doane’s Rule26 

4. Rice’s Rule27 

5. Freedman and Diaconis’ Rule28 

Each of these rules have specific assumptions, advantages, and limitations. A complete 

discussion of the pros and cons of each rule is beyond the scope of this paper. For 

simplicity, and because it is prominently featured in the Cost Estimating Body of 

 

 

24 Scott, D.W. (1992) Multivariate density estimation: theory, practice, and visualization, John Wiley & 
Sons: New York. 
25 Sturges, H. (1926) The choice of a class-interval. J. Amer. Statist. Assoc., 21, 65–66. 
26 Doane, D.P (1976). Aesthetic frequency classification. American Statistician, 30, 181– 183. Retrieved 
February 17, 2024 from http://www.jstor.org/stable/2683757 
27 Lane, D. M. (n.d.). Online Statistics Education: An Interactive Multimedia Course of Study. Rice 
University. Retrieved from http://onlinestatbook.com/ 
28 Freedman, D. and Diaconis, P. (1981) On this histogram as a density estimator: L2 theory. Zeit. Wahr. 
ver. Geb., 57, 453–476 
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Knowledge (CEBoK), we chose Scott’s Rule. This rule states that the optimal bin width 

is given by: 

𝐵𝐵𝐵𝐵𝐵𝐵 𝑤𝑤𝐵𝐵𝑤𝑤𝑤𝑤ℎ =
3.49𝑠𝑠
√𝐵𝐵3  

Where s is the sample standard deviation and n is the sample size. This implies a 

certain number of bins, which is rounded up to the nearest whole number. 

Selecting the Penalty Function 
The industry-standard test to determine whether binned data fit a theoretical distribution 

is the Chi-Square test. That test involves generating the Chi-Square Statistic (CSS), 

then obtaining an associated p-value. In this context, higher p-values are favorable 

because they indicate that the hypothesized distribution cannot reasonably be rejected. 

Lower p-values are unfavorable because they indicate rejection of the hypothesized 

distribution. 

From this it follows that lower CSS values should be associated with higher p-values 

and a superior distribution fit. The formula for the CSS confirms this: 

𝐶𝐶𝐶𝐶𝐶𝐶 = �
(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖

𝑗𝑗

𝑖𝑖=1

 

where O and E are the observed and expected frequencies of data in each of the j bins. 

In this formula, if the distribution fits perfectly, then O=E for each bin, CSS = 0 and the 

associated p-value = 1.0000. At the other extreme, when the distribution fits very poorly, 

the CSS approaches infinity and the p-value approaches zero. 

One limitation of the Chi-Square routine is that the expected frequency (E) for each bin 

must be at least five. As we will see, the distribution of actual productivity is so heavily 

right-skewed that no reasonable theoretical distribution will have this property. In 

addition, many of the distributions tested give similar results. 
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To address these issues, we used a standard SSE-based penalty function, but also 

applied the CSS to eligible bins29. For the large data set, the limitations of Excel Solver 

required focusing on only the first 11 bins30. Finally, we created “micro bins,” for 

visualization only, to better show the differences among the distributions. All of the 

frequency-based graphs shown in this paper use micro bins. 

Summary of the Method 
The following tables summarize the method that we used, with associated rationale. 

Table 6: List of Distributions Tested with Associated Rationales 

Distribution 
Method of 
Parameter 

Specification 

Color 
Style in 
Figures 

Rationale Examples of Prior Work 
Using This Distribution 

(Actual data) Not Applicable Light blue 
markers 

This is the data set we 
are attempting to fit Not Applicable 

Beta Minimize SSE Red curves 
Flexible, supports left 
skew, generalization of 
PERT Beta 

Brown et al (2020) 

Weibull Minimize SSE Light green 
curves 

Flexible, “gumby 
distribution,” 
generalization of 
Rayleigh curves 

At least seven prior 
ICEAA papers or training 
sessions 

Normal Minimize SSE 
Orange 
curves 
(solid) 

Standard S-Curve 
distribution NCCA S-Curve Tool 

Lognormal Minimize SSE Purple 
curves 

Standard S-Curve 
distribution 

NCCA S-Curve Tool, DoD 
Joint Cost and Schedule 
Risk and Uncertainty 
Handbook31 

Triangular Minimize SSE Black 
curves 

Common cost analyst 
practice Ubiquitous32 

Normal 
(MoM) MoM 

Orange 
curves 
(dashed) 

Common cost analyst 
practice Ubiquitous 

 

 

29 This captured a very large percentage of the data. 
30 Again, this captured a very large percentage of the data—see Table 6 
31 https://mosaicprojects.com.au/PDF-Gen/CSRUH.pdf 
 
32 Most commonly, triangular distributions are specified based on Low, Most Likely, and High values  
provided by a SME (and perhaps adjusted for enhanced uncertainty), rather than fitted to data. However, 
we did not test a “Triangular (MoM)” distribution, as its fit was transparently extremely poor. Note that the 
fitted Triangular distribution could have “chosen” MoM parameters if those were the best fitting. 
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Table 7: Summary of Binning Conventions and Associated Purposes 

Bin-Setting 
Method Purpose 

Number Of 
Bins 

(Small 
Projects) 

Number Of 
Bins 

(Medium 
Projects) 

Number Of Bins 
(Large Projects) 

Scott’s Rule Minimize SSE33  21 of 21  
(all bins) 

17 of 17  
(all bins) 

11 of 27 
(98.6% of data) 

Scott’s Rule Chi-Square Test34 

(eligible bins) 
6 of 21 
(95.4% of data) 

6 of 17 
(91.4% of data) 

6 of 27 
(95.2% of data) 

“Micro bins” Visualization 47 50 37 

Data Analysis 
As previously stated, we used ISBSG data for this analysis. ISBSG was selected 

because it contains:  

• A large volume of projects. ISBSG’s software development repository contains 

10,600 projects, dating from 1989 to 2020.  

• A variety of descriptive variables (fields) on each project. A total of 252 fields 

are available. Of these, 105 are quantitative and 147 are qualitative.  

• A variety of fields that describe software size. Although not all metrics are 

available for each project, ISBSG allows for the reporting of software size 

based on IFPUG function points, Common Software Measurement International 

Consortium (COSMIC) function points, Nesma function points, SLOC, and a 

variety of less prevalent metrics.  

• Fields that identify development team work effort measured in person-hours.  

• A data quality rating, which contains an ISBSG-assigned letter grade, A 

through D. 

 

 

33 This is the criterion we used to determine the best fitting distribution. 
 
34 This is the criterion we used to test the hypothesis that actual data follows each hypothesized 
distribution. 
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• Easy accessibility, through purchase of a subscription, to the general public. 

Details are available at https://www.isbsg.org/isbsg-subscriptions/.  

It is important to note one limitation of the ISBSG dataset: not all the available fields are 

populated for all projects. For example, AFP are reported for approximately 71% of 

projects. As a result, the amount of data available for analysis is reduced, possibly 

significantly, depending on the type and number of fields chosen for analysis. 

For this analysis, we needed to filter the ISBSG dataset. Prior to any filtering, ISBSG 

offers data that varies in data quality, type of software project, as well as the metrics 

reported for each project. We chose to filter the ISBSG according to the following 

criteria: 

• Sizing metric. In order calculate and compare productivity over multiple 

projects, both size and effort must be measured the same way for every 

project. While effort is consistently measured in man-hours, the ISBSG data 

includes many ways of measuring size. The most prevalent method is using 

function point sizing according to IFPUG 4+ standards. Because this widely 

used sizing metric offers the largest dataset, we filtered for projects that report 

effort using this standard. 

• Data quality. ISBSG rates data quality for each project on a letter scale 

ranging from A to D. The rating is based on ISBSG’s assessment of data 

credibility and completeness. We chose to only include projects rated A or B. 

• Project activity scope. This field indicates what tasks were included in the 

project work effort data recorded. These are: (1) Planning, (2) Specify, (3) 

Design, (4) Build, (5) Test and (6) Implement. The most reported set of 

activities are “design; build; test; implement”. Because this scope of activities 

is a frequently seen, we chose to filter for projects that reported this scope. It 

is critical to note that reader use of our analysis requires a good 

understanding of the project being estimated. That is, if the project being 

estimated includes activities that differ, then the productivity analysis and 

calculations in this paper should not be used. 
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After filtering the ISBSG dataset, 1,675 records were available for analysis. Each record 

represents a software development project. 

The next step was to split this curated ISBSG dataset, based on software size. Three 

project size categories -  small, medium, and large projects – were created by placing 

one third of the data into each category. The reason for categorizing the data in this way 

is that it allows us to address and analyze differences in productivity due to economy or 

diseconomy of scale. For example, if productivity has different values or different 

uncertainty for small projects, then this approach will reveal that result.  

A second reason for categorizing results by size is that it allows analysts using our 

results to select a category that most closely resembles the project of interest. This is 

particularly important for estimators working on large, U.S. federal government projects . 

We make this distinction because the ISBSG dataset is populated with many private 

industry projects that tend to be much smaller than a typical U.S government 

acquisition. The size categories enable estimators to choose projects whose size is 

most  analogous to the project being estimated. 

The final step to create the curated dataset was to calculate productivity based on size 

(measured in adjusted IFPUG 4+ function points) divided by effort (measured in 

development team man-hours). 

Small Projects 
Starting with the small category, we have 567 data points that are characterized by the 

following statistics: 

Table 8: Small Project Statistics (n=567) 

Statistic Size Effort Productivity 
Mean 59.4 936 0.1381 
Median 59.0 716 0.0826 
StDev 6.9 888 0.1667 
Skewness 0.181 0.742 0.999 
CV 12% 95% 121% 
Min 7 48.54 0.0045 
Max 70 8,044 1.4421 
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The small category is populated with projects that are less than or equal to 70 AFP. The 

distribution of productivity within this category is plotted using a histogram. This required 

binning the data. The number of bins and bin width was calculated using Scott’s Bin 

Width, as described previously. For this category, Scott’s bin width was calculated to be 

0.070. To force each graph to begin at the origin, all minima were treated as zero for 

purposes of bin width calculations. Hence, taking the range of productivity values 

(0.0000 to 1.4421) and dividing by the bin width suggests that the optimal number of 

bins is 20.513, which was rounded up to 21 bins. Dividing the data into 21 equally sized 

bins results in an adjusted bin width of 0.0687, meaning that the first bar on the 

histogram would include productivity values between 0 and 0.0687. The second bar will 

include values from 0.0687 to 0.1373, and so on. The resulting histogram is shown 

below: 

 
Figure 4: Small Project Productivity Histogram (n=567) 

Visually, the distribution is heavily right skewed due to the small number of projects at 

the far-right end of the graph. This observation is confirmed by the fact that the mean is 
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greater than the median35. As shown in Table 8, the median productivity for small 

projects is 0.0826 AFP/hour, which lies in the 2nd bin from the left. The mean is 0.1381 

AFP/hour, which lies in the 3rd bin from the left and is clearly well beyond the 50th 

percentile. The presence of skewness indicates that a normal distribution may not be 

the best fit for the observed data. 

The next step was to evaluate a variety of probability distributions. For this analysis, we 

evaluated the following distributions: 

• Beta 

• Weibull 

• Normal 

• Lognormal 

• Triangular 

• Normal (Method of Moments) 

The rationale for each distribution’s inclusion was described previously. For each 

distribution, we calculated the parameters that best fit the observed data. For example, 

the normal distribution is defined by the mean and standard deviation. We chose values 

for these parameters that allowed the normal distribution to best fit our data. This was 

accomplished by minimizing the sum of squared errors (SSE) between the observed 

and predicted values. Excel Solver was used to find the parameters for each distribution 

that minimized SSE. The following table shows the calculated results: 

 

 

35 Skewness is calculated by 3 * (mean – median) / Standard deviation. When the value is greater than 
zero (positive skewness), the curve is right-skewed. Negative skewness indicates a left-skewed curve. 
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Table 9: Fitted Distributions for Small Projects 

 

The SSE values for each fitted distribution are highlighted yellow. The best fitting 

distribution is the one that minimizes the SSE value, which for this dataset is the 

Lognormal distribution.  

We also calculated the significance of each fitted distribution using the Chi-Square 

Statistic (CSS), calculated bins with at least five projects36. The p-values, shown on the 

last row of the table, indicate the probability that we would observe data that varies from 

the theoretical distribution by at least as much as it does—assuming that the theoretical 

distribution is the right one. For example, the p-value of 0.2829 for Lognormal indicates 

a roughly 28% chance that, if the observed data were precisely Lognormal (with our 

fitted parameters), we would observe data like this. In this framework, the distribution 

 

 

36 Our original intent was to minimize the CSS directly. However, the CSS routine is valid only when the 
expected frequency of each bin (or at least, the great majority of bins) is at least five. The data are so 
heavily right-skewed that no reasonably fitting distribution will have this property. The numerator of each 
term in the CSS represents squared error, and those terms are summed. Therefore, we chose to 
minimize the simpler SSE expression. Nevertheless, we applied the CSS routine to bins where the actual 
frequency was at least five to calculate p-values. It is not possible to simply re-define the bins so that 
each one has at least five observations—that would violate Scott’s Rule, as well as the basic principle 
that bins must be equally spaced. 
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with the highest p-value is the one that arguably best describes or “fits” the data, for 

CSS-eligible bins. By this standard, not only is Lognormal the best fitting distribution, but 

its p-value is over 700 times greater than the so-called “gumby” distribution, Weibull, 

which is second best. Meanwhile, the Lognormal’s SSE is at least 75% lower than that 

of the next-best-fitting distributions: Beta and Weibull. 

The fitted parameters for each distribution are in the table below. For completeness, we 

also calculated MoM parameters for each candidate distribution. However, only the 

light-yellow highlighted distributional specifications are graphed and tested. 

Table 10: Fitted and MoM Parameters for Small Projects 

 

The Fitted column shows the distribution parameters for each distribution. Additionally, 

we calculated parameters using a Method of Moments (MoM) approach. With a MoM 

approach, the analyst does not “fit” a distribution, but instead calculates statistical 

values from the dataset and uses those calculations to specify a distribution. For 

example, a MoM calculation for the normal distribution is simply the mean and standard 

deviation of the data. The Normal MoM parameters are particularly important because 

this is a method commonly used in the cost estimating community. This method is to 

assume that the data is normally distributed, calculate mean, calculate standard 

deviation, and then apply those values in a distribution, which is then fed into a Monte 

Carlo simulation. Because this method is widely used, it is worth exploring  whether our 

best fitted result can improve on the technique.  

Parameter Fitted MoM
Beta Alpha 1.3693 0.4530
Beta Beta 17.1172 2.8281
Weibull Alpha 1.2307 0.0435
Weibull Beta 0.1152 0.4068
Normal Mean 0.0838 0.1381
Normal StDev 0.0828 0.1667
Lognormal Mean -2.4588 -2.4078
Lognormal StDev 0.8729 0.8904
Triangular Low 0.0024 0.0045
Triangular Mode 0.0024 0.0343
Triangular High 0.2761 1.4421
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These results can also be viewed by plotting the observed (actual) values and 

comparing them to each of the fitted curves. The following graph shows these results 

and adds a smoothed line to each fitted distribution. This graph, and the corresponding 

ones we created for medium and large-sized projects, use the “micro bins” concept 

described previously. 

 

 
Figure 5: Comparison of Fitted Distributions for Small Projects 

The graph (Figure 5) shows our actual data in the light blue dots. Although many of the 

lines overlap, we can see that at several points, the purple curve is clearly closer to the 

blue dots than the other lines. The Lognormal distribution was plotted using the purple 

curve, which confirms our quantitative conclusions that Lognormal is the best fitting 

curve. 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



27 

This data can also be viewed as a cumulative distribution function (CDF), which is often 

referred to as an S-Curve. The same results, with cumulative percentile plotted on the y-

axis are as follows: 

 
Figure 6: Comparison of Fitted CDF Distributions for Small Projects 

These results indicate that for small projects (AFP less than 70), productivity can be 

best modeled using a Lognormal distribution, with parameters of Mean = -2.4588 and 

StDev = 0.872937.  

 

 

37 It is important not to interpret these numbers as direct productivities. The mean of a lognormal 
distribution is the mean of the natural logarithms (ln) of the underlying data. For example, if every 
productivity in the data set were 1 AFP/hour, the mean of the corresponding lognormal distribution would 
be zero, because ln(1) = 0. Here, the negative value for the distributional mean implies that productivity is 
generally less than 1 AFP/hour. This should be evident from Figure 6, where productivities of more than 
0.5 AFP/hour are, in a literal sense, “off the chart.” 
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Medium Projects 
Similar analysis was completed for medium sized projects. In our dataset, medium 

projects are greater than 70 AFP and less than or equal to 115 AFP. The summary 

statistics for this category are shown below: 

Table 11: Medium Project Statistics (n=549) 

Statistic Size Effort Productivity 
Mean 89.7 1,500 0.1203 
Median 88.0 1,096 0.0805 
StDev 13.0 1,970 0.1206 
Skewness 0.382 0.615 0.989 
CV 14% 131% 100% 
Min 71 91 0.0031 
Max 115 35,063 0.8242 

 

The histogram of observed data for the medium category is as follows: 

 
Figure 7: Medium Project Productivity Histogram (n=549) 

Our analysis of the medium category paralleled that of the small category. We 

evaluated the same distributions and optimized each one using Excel Solver to select 

parameters that minimize SSE. The quantitative results are shown in the following table: 
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 Table 12: Fitted Distributions for Medium Projects 

 

The SSE values for each fitted distribution are highlighted yellow. The best fitting 

distribution is the one that minimizes the SSE value, which for this dataset is again the 

Lognormal distribution. The fitted and MoM parameters for each distribution are in the 

following table: 

Table 13: Fitted and MoM Parameters for Medium Projects 

  

These results again can be viewed by plotting the observed (actual) values and 

comparing them to each of the fitted curves. The following graph shows these results 

and adds a smoothed line to each fitted distribution: 
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Figure 8: Comparison of Fitted Distributions for Medium Projects 

The graph shows our actual data as light blue dots. Although many of the lines overlap, 

we can see that the purple curve is clearly closer to the blue dots than the other lines. 

The Lognormal distribution was plotted using the purple curve, which confirms our 

quantitative conclusions that Lognormal is the best fitting curve. 

This data can also be viewed as a cumulative distribution function (CDF), which is often 

referred to as an S-Curve. The same results, with cumulative percentile plotted on the y-

axis, are as follows: 
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Figure 9: Comparison of Fitted CDF Distributions for Medium Projects 

These results indicate that for medium projects (AFP 70 to 115) productivity can be best 

modelled using a Lognormal distribution, with parameters of Mean = -2.5275 and StDev 

= 0.7483. 

Large Projects 
Similar analysis was completed for large sized projects. In our dataset, large projects 

were those that are greater than 115 AFP. The summary statistics for this category are 

shown below: 

Table 14: Large Project Statistics (n=549) 

Statistic Size Effort Productivity 
Mean 236.8 2,804 0.1521 
Median 185.0 1,882 0.0988 
StDev 171.4 2,609 0.1842 
Skewness 0.906 1.060 0.868 
CV 72% 93% 121% 
Min 116 60 0.0130 
Max 2,048 17,444 2.0667 
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The histogram of observed data for the large category is as follows: 

 
Figure 10: Large Project Productivity Histogram (n=559) 

The same approach was taken in analyzing the large category. We evaluated the same 

distributions, and optimized each one, using Excel Solver, to select parameters that 

minimize SSE. The quantitative results are shown in the following table: 
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Table 15: Fitted Distributions for Large Projects 

 

The SSE values for each fitted distribution are highlighted yellow. The best fitting 

distribution is the one that minimizes the SSE value38, which for this dataset is again the 

Lognormal distribution. The optimized parameters for each distribution are in the 

following table: 

 

 

38 For the large dataset, we minimized SSE for only the non-zero bins, so that Excel solver would 
converge to a feasible solution. The second yellow highlighted row shows SSE for the non-zero bins. 

BIN LB UB CUMFREQ FREQ PRED_BETA PRED_WEIBULL PRED_NORMAL PRED_LOGNORMAL TRIANGULAR_CUM PRED_TRIANGULAR PRED_NORMAL_MoM
0 0 0 0 0 0 0 0 0 0 0 0
1 0.0000 0.0765 197 197 209.4 212.2 218.1 203.7 0.3830 214.1 190.6
2 0.0765 0.1531 411 214 217.7 216.0 227.0 214.7 0.7729 218.0 90.2
3 0.1531 0.2296 475 64 92.6 96.3 99.1 83.0 0.9719 111.2 89.9
4 0.2296 0.3062 505 30 29.3 27.8 14.1 32.0 1.0000 15.7 75.7
5 0.3062 0.3827 522 17 7.8 5.7 0.6 13.3 1.0000 0.0 53.7
6 0.3827 0.4593 532 10 1.8 0.9 0.0 6.0 1.0000 0.0 32.2
7 0.4593 0.5358 538 6 0.4 0.1 0.0 2.9 1.0000 0.0 16.3
8 0.5358 0.6123 541 3 0.1 0.0 0.0 1.5 1.0000 0.0 6.9
9 0.6123 0.6889 543 2 0.0 0.0 0.0 0.8 1.0000 0.0 2.5

10 0.6889 0.7654 548 5 0.0 0.0 0.0 0.4 1.0000 0.0 0.8
11 0.7654 0.8420 551 3 0.0 0.0 0.0 0.3 1.0000 0.0 0.2
12 0.8420 0.9185 551 0 0.0 0.0 0.0 0.2 1.0000 0.0 0.0
13 0.9185 0.9951 551 0 0.0 0.0 0.0 0.1 1.0000 0.0 0.0
14 0.9951 1.0716 555 4 0.0 0.0 0.0 0.1 1.0000 0.0 0.0
15 1.0716 1.1481 556 1 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
16 1.1481 1.2247 557 1 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
17 1.2247 1.3012 558 1 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
18 1.3012 1.3778 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
19 1.3778 1.4543 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
20 1.4543 1.5309 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
21 1.5309 1.6074 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
22 1.6074 1.6840 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
23 1.6840 1.7605 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
24 1.7605 1.8370 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
25 1.8370 1.9136 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
26 1.9136 1.9901 558 0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0
27 1.9901 2.0667 559 1 0.0 0.0 0.0 0.0 1.0000 0.0 0.0

Sums: 559.0 559.0 559.0 559.0 559.0 559.0 559.0
SSE: 1236.4 1593.9 2568.4 500.2 3236.5 20150.4
SSE (to first zero): 1216.4 1573.9 2548.4 480.8 3216.5 20130.4
p-value: 0.0000 0.0000 0.0000 0.1381 -- 0.0000
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Table 16: Optimized Parameters for Large Projects 

 

These results again be viewed by plotting the observed (actual) values and comparing 

them to each of the fitted curves. The following graph shows these results, and adds a 

smoothed line to each fitted distribution: 

Fitted MoM
Beta Alpha 2.2175 0.4255
Beta Beta 38.9826 2.3728
Weibull Alpha 1.6052 0.0474
Weibull Beta 0.1213 0.4052
Normal Mean 0.0958 0.1521
Normal StDev 0.0691 0.1842
Lognormal Mean -2.3336 -2.4684
Lognormal StDev 0.6819 0.8238
Triangular Low 0.0234 0.0031
Triangular Mode 0.0234 0.0383
Triangular High 0.2712 2.0667
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Figure 11: Comparison of Fitted Distributions for Large Projects 

The graph shows our actual results as light blue dots. Although many of the lines 

overlap, we can see that in the middle of the graph, the purple line is clearly closer to 

the blue dots than the other lines. The Lognormal distribution was plotted using the 

purple line, which confirms our quantitative conclusions that Lognormal is the best fitting 

curve. 

This data can also be viewed as a cumulative distribution function (CDF), which is often 

referred to as an S-Curve. The same results with cumulative percentile plotted on the Y 

axis are as follows: 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



36 

 
Figure 12: Comparison of Fitted CDF Distributions for Large Projects 

Summary Results 
The results from each size category are summarized in the table below: 

Table 17: Summary Results for Each Size Category 

Size Category AFP Range Number of Projects(n) Best Fitting Curve Curve Parameters 
Small 0 to 70 567 Lognormal Mean: -2.4558 

StDev: 0.8729 

Medium 71 to 115 549 Lognormal Mean: -2.5275 
StDev: 0.7483 

Large 116+ 559 Lognormal Mean: -2.3336 
StDev: 0.6819 

 

In each dataset, the Lognormal distribution best fits the observed results. 

Practical Applications 
In this section, we explore how cost estimators should use our results to quantify 

productivity uncertainty. We offer several scenarios commonly seen in the software 
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estimating community. For each scenario, we compare how the problem would typically 

be solved, and how that method could be improved with the findings of this paper. 

Scenario 1: Estimate for an Agile Development Project 
In our first example, we assume a software development estimate is needed for a 

project that employs an agile development methodology. Under this scenario, the 

estimator is given an effort metric. This is the reverse of a traditional software estimating 

problem where size is given. Under a strict agile philosophy, developers might be given 

a constrained schedule and team size. Therefore, effort is constrained and taken as an 

input.  

Applying productivity and its uncertainty is particularly important under this scenario. 

Why? Because if effort is treated as a known and constrained variable, then all the risk 
and uncertainty will come from productivity. This productivity risk and uncertainty will 

translate into an estimated size metric, with its own risk and uncertainty. In other words, 

when an agile philosophy decides to constrain effort, then the project is inherently 

accepting scope risk, and the size of the product must be both estimated and risk-

adjusted. 

In this scenario, we assume the project effort is constrained to 1,100 man-hours. This 

value is near the median of our dataset, and therefore represents a realistic scenario. 

The estimator might then use the ISBSG dataset as follows: 

• Filter ISBSG projects for data quality, use of IFPUG 4+ sizing, and 

development tasks. These are the same filter criteria we use in our analysis. 

• From the filtered dataset, calculate productivity by dividing AFP by man-

hours. 

• Calculate a mean productivity. This results in mean = 0.1369  

• Adjust for risk by varying the productivity number by plus and minus 10%. 

This method is one often employed by cost estimators who do not use Monte 

Carlo simulation.  
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Following these steps, the estimator would conclude that the calculated size is 151 

AFP, with a range of 136 to 166 AFP. 

Using the findings of this paper, we would follow this alternative process to the 

“traditional" method discussed above: 

• Given our man-hour input is near the mean of our effort data, use our medium 

dataset. 

• Apply a Lognormal distribution with mean = -2.5275 and StDev = 0.7483. 

These are the fitted parameters we show in Table 13. 

• Calculate an 80% confidence interval by applying Excel’s LOGNORM.INV 

function, using 10% and 90% as the probability inputs. 

The result is a range of productivity between 0.03 and 0.21. This results in a confidence 

interval for size of 34 to 229 AFP. The median AFP from this distribution is 88. 

These are vastly different results. Our method yields a lower size estimate (88 versus 

151), which indicates that less functional code will be delivered. But even more dramatic 

is that the risk range from our 80% confidence interval says that the AFP delivered 

could be as low as 34 AFP and as high as 229 AFP. The traditional method has vastly 

under-estimated the risk and uncertainty due to the productivity assumption. 

Scenario 2: Estimate Effort for a Large Program 
In our second example, we present a situation that is common to analysts estimating 

software development for a large government acquisition. The size of these types of 

projects is especially large compared to much of the data found in ISBSG. 

For this example, we assume that software requirements have been documented, 

function point analysis has been done, and the size count is 1,500 AFP. 

A typical estimating approach (i.e., one of the methods discussed earlier and shown in 

Figure 1) is to use the published productivity factors and assume that productivity is 

equal to 16.29 FP/PM. If we convert that to man-hours using 160 hours per month, the 

productivity factor is 0.1018. We then calculate effort based on size divided by 

productivity and get an effort estimate of 14,733 man-hours. As in the first scenario, a 
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standard risk range of plus or minus 10% would give a range of 16,206 to 13,250 man-

hours. 

As an alternative, we use our large dataset, and again apply a Lognormal distribution 

with mean = -2.5275 and StDev = 0.7483. We get a median productivity value of 

0.0970, with an 80% confidence interval of 0.0405 to 0.2323. Our effort estimate is 

therefore 15,472 man-hours, with a range of 6,457 to 37,075. 

In this case, the two methods yield a similar point estimate of about 15K man-hours. But 

the risk range is vastly different. The high end of our range is 37K versus 16K using the 

traditional method. This suggests that the “worst-case” scenario” is far more effort than 

one would have assumed from the first calculation. If we apply a typical labor rate of 

$100 per hour, then the high end of the originally calculated range is $1.6M. When 

compared against our high end of $3.7M, it is easy to see how cost risk might be 

understated if productivity is not properly risk adjusted. 

Scenario 3: Apply Uncertainty to a Known Productivity 
Under this scenario, we assume that the analyst already has a credible estimate for 

productivity. For example, if productivity has been measured using analogous projects 

within the same agency or program, using historical actuals. In this case, the 

productivity value can be considered highly defensible. But the uncertainty and range 

around productivity still needs to be considered. 

For this scenario, we assume that we are estimating the development effort for a large 

project that has been sized at 1,100 AFP. The defensible productivity for this project is 

0.07 AFP/man-hour. Because the number is well founded, the analyst is treating it as a 

known value. 

Using our results, we apply Excel’s LOGNORM.DIST function using the parameters we 

report in Table 16. The result is that the given productivity is found at the 32nd percentile 

of the lognormal CDF. The 10% and 90% percentiles are 0.0405 and 0.2323. We use 

these values to calculate an 80% confidence interval for effort. The result is an effort 

estimate of 16,224 man-hours, with a range of 4,735 to 27,188 man-hours. Using the 

same labor rate assumption of $100 per hour, this range translates to $473K to $2.7M. 
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This scenario demonstrates that even when an analyst has an acceptable number for 

productivity, our results can add context and value by providing a range and noting the 

confidence level of the given number. This can be accomplished quickly, without the 

need for Monte Carlo simulation. 

The following two tables compare the results obtained from the first three scenarios 

against the results obtained using the methods proposed in this paper. 

Table 18: Baseline Scenario Results 

Scenario 
# Scenario Description 

Parameter 
Estimated PE 

“Worst 
Case” 

“Best 
Case” 

1 
Estimate for an Agile Development 
Project Delivered Size (AFP) 151 136 166 

2 Estimate Effort for a Large Program Cost ($M) $1.5 $1.3 $1.6 

3 
Apply Uncertainty to a Known 
Productivity Cost ($M) $1.6 $1.4 $1.7 

 
Table 19: “Risky Business” Scenario Results 

Scenario 
# Scenario Description 

Parameter 
Estimated PE 

“Worst 
Case” 

“Best 
Case” 

1 
Estimate for an Agile Development 
Project Delivered Size (AFP) 88 34 229 

2 Estimate Effort for a Large Program Cost ($M) $1.5 $3.7 $0.6 

3 
Apply Uncertainty to a Known 
Productivity Cost ($M) $1.6 $2.7 $0.5 

 

In the case of Scenario 1, our results show a point estimate (PE) that is 42% lower and 

a worst case that is 75% lower. This suggests that less code may be delivered, which is 

directly attributable to discrepancies in productivity uncertainty. 

In Scenario 2, our result has a similar point estimate, but a worse case outcome that is 

180% higher, when productivity uncertainty is properly considered. 

In Scenario 3, although we treated productivity (and, therefore, cost) as a "known 

value," we found it to be located at only the 32nd percentile of the fitted productivity 

distribution. In addition, the "worst case" cost is 92% higher when productivity 

uncertainty is properly considered. 
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Scenario 4: Using Our Results within Monte Carlo Simulation 
Under this scenario, we assume that the estimator has the same defensible productivity 

factor, as described in Scenario 3. We further assume that the estimator is conducting 

risk and uncertainty analysis using a Monte Carlo simulation. Under this approach, the 

analyst needs to define a probability distribution for all cost model inputs that contain 

uncertainty. 

The application of our results to this situation is straightforward. When defining the 

uncertainty distribution for productivity, the analyst would select a lognormal form. The 

distribution parameters could be directly entered as the mean and standard deviation 

from Table 9 , Table 12, or Table 16, depending on whether the project size is small, 

medium, or large. Alternatively, if the estimator wanted to use the known productivity 

factor as the mean, they could calculate a CV by taking our mean divided by standard 

deviation. The distribution could then be defined using the known mean and calculated 

CV. 

Scenario 5: Productivity as an Output 
The final scenario that we offer is one in which productivity is not specified but is instead 

calculated as an output. As discussed in Productivity as an Output, if the estimator is 

using a parametric equation such as COCOMO II, then there is no direct specification of 

productivity. 

For this scenario, we assume that the estimator has been given a KESLOC size of 200 

and has also entered the E and EM parameters of COCOMO II to calculate effort of 

225,175 man-hours39.  

Although productivity is implied in this process, there is no direct specification of it as an 

input. The analyst would calculate productivity by dividing 200,000 ESLOC by 225,175 

man-hours derive a productivity factor of 0.8882 SLOC/MH. 

 

 

39 These scenario parameters, and the use of COCOMO II to calculate effort, are presented in the ICEAA 
Cost Estimating Body of Knowledge for Software, Lesson 4 
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We need to account for the fact that this productivity calculation is denominated 

SLOC/MH and not FP/MH. One option would be to backfire the productivity number to 

FP/MH using a published SLOC to FP conversion table40. This conversion would yield a 

productivity factor denominated in FP/MH, and any of the techniques in the previous 

scenarios could be applied. A second option would be to use our mean and standard 

deviation parameters to calculate a CV. Because CV is unitless, it could be used to 

specify a lognormal distribution using the calculated productivity as the mean. In either 

situation, our results would provide a valuable way to assess the implied productivity 

from the COCOMO II equation, and to add risk and uncertainty to the estimated effort. 

Conclusions and Discussion 
It’s well-documented that every software development effort estimate should start with 

an estimate of size41. Beyond that, some methods also require an estimate of 

productivity, while others treat productivity as an output. 

Assuming that size is known (or at least, has its uncertainty properly qualified), an 

analyst makes a significant assumption when they also assume a productivity level. 

After all, since Productivity = Size/Effort by definition, it follows that Effort = 

Size/Productivity, also by definition. If size and productivity are assumed, there is 

nothing left to estimate, and effort is also effectively assumed, rather than estimated. An 

estimator who assumes size and productivity values has, in effect, assumed away their 

estimate! In this regard, treating productivity as an input is problematic on its face. 

Nevertheless, productivity-based estimating is popular and sometimes necessary. This 

is especially true when either a quick-turn or Rough Order of Magnitude (ROM)  

estimate is required, an estimate is  analogy-based, or an estimate is for an agile 

project. When productivity is simply assumed in this manner, it is essential to quantify 

 

 

40 For example, The QSM Function Point Languages Table, https://www.qsm.com/resources/function-
point-languages-table 
41 Cost Estimating Body of Knowledge for Software (CEBoK-S), Lesson 4. 
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uncertainty around it, and to consider the implications of that uncertainty on the overall 

cost or effort estimate. Even when productivity is calculated by a more sophisticated 

EER, it is important to cross-check the result against published productivity benchmarks 

or ranges. 

In light of these critical considerations, we previously stated that our analysis would 

address three questions: 

• How much variance is present in productivity data? 

• What probability distribution should be used to model productivity? 

• What distribution parameters best fit our data? 

We have answered all three questions in this paper. Our analysis has shown that: 

• There is tremendous variance in productivity data, with CVs exceeding 100%. 

• Productivity is best modeled using a lognormal distribution. 

• The best-fitting lognormal parameters vary, but only slightly, based on the “size 

bucket” of the project within the ISBSG dataset. 

Because the lognormal distribution is supported in MS Excel, generating S-curves and 

cross-checks of point estimates using our fitted distributional parameters is fairly 

straightforward. Additionally, the real-world scenarios presented in Practical 

Applications demonstrate that use of these distributional parameters will provide a more 

accurate point estimate and/or a more realistic uncertainty range around an estimate of 

productivity, total effort, or total cost. We do not assert that Productivity follows a 

lognormal distribution. Rather, we assert that the lognormal distribution provides the 

best approximation of the distribution of productivity relative to all candidate distributions 

that can reasonably be considered. 

The S-curves associated with our three fitted lognormal distributions are shown in the 

figure below. In this graph, the thickness of the curve indicates the size of the project, 

with the thickest curve corresponding to the largest projects in the ISBSG dataset. 
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Figure 13: All Fitted Lognormal CDFs (S-Curves) 
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Could one have reasonably foreseen the result that productivity is best modeled as a 

lognormal distribution? Perhaps. Recall that, in a lognormal distribution, the distribution 

of the natural logarithms (“logs”) of the underlying data is normal. We also know the log 

of a quotient equals the difference of the logs, and that the log of the difference of two 

normal random variables is normal. Symbolically: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑃𝑃𝑃𝑃𝑤𝑤𝐵𝐵𝑃𝑃𝐵𝐵𝑤𝑤𝑃𝑃 =
𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑤𝑤
 

𝐿𝐿𝐿𝐿 (𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑃𝑃𝑃𝑃𝑤𝑤𝐵𝐵𝑃𝑃𝐵𝐵𝑤𝑤𝑃𝑃) = 𝐿𝐿𝐿𝐿 �
𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑤𝑤
� = 𝐿𝐿𝐿𝐿(𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆) − 𝐿𝐿𝐿𝐿(𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑤𝑤) 

Therefore, if log-Size and log-Effort are normal, then log-Productivity must also be 

normal, meaning that Productivity must be lognormal. More generally, the quotient of 

two lognormal random variables is itself lognormal. 

The following figures plots the frequencies of log-Size, log-Effort, and log-Productivity, 

respectively, based on the frequency of points by bin, relative to their percentage 

deviation from their range midpoints42.  

 

 

42 This convention is used so that all three data series can be compared on the same graph. 

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024



46 

 
Figure 14: Frequency of Log-Size, Log-Productivity, and Log-Effort by % Deviation from Range Midpoint 

This graph uses binned data to compare the distributions of log-space Size, 

Productivity, and Effort to each other on a common scale. For each variable, there are 

53 bins, with the lower bound of the first bin corresponding to the minimum of the 

dataset, and the upper bound of the last bin corresponding to the maximum. This 

implies that the range midpoint for each variable occurs at the midpoint of the 27th bin. 

The graph uses the convention that “yellow (shown as orange for greater contrast) and 

blue make green.” Since size and productivity jointly determine effort, the three are 

depicted at yellow/orange, blue, and light green, respectively.  

For example, on the blue (productivity) graph, the y-intercept is (0,117). This implies 

that, for the 27th (middle) bin, which exactly lies at the midpoint of the range of log-

Productivity values, the number of projects in the bin (i.e., extremely close to the 

midpoint) is 117 out of 1,675. 
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From visual inspection, the distribution of Size is not lognormal: it is highly right-skewed, 

even in log space43. However, the distribution of Effort looks approximately normal in log 

space, perhaps with some slight left-skew. These skewness values appear to 

approximately offset44, as the distribution of log-Productivity appears approximately 

normal (with a skewness value that implies approximate symmetry), implying that the 

distribution of Productivity is approximately lognormal, supporting our finding. 

Next Steps 
The research detailed in our paper constitutes an important advance and practical, 

easy-to-understand findings that can and should be applied by software cost analysts 

TODAY. Not surprisingly, our work on this paper has highlighted the need for future 

complementary research introduced below. 

Our research focused on modeling the uncertainty around productivity, rather than the 

issue of economies of scale (EoS) vs. constant returns to scale (CRS) vs. diseconomies 

of scale (DoS). However, complete separation of the issues is impossible, because the 

EoS and DoS constructs imply that productivity changes as size changes. 

The prevailing wisdom in the cost community on this topic is that DoS prevails45, with 

associated slopes of the log-space regression of Effort on Size ranging from 1.099746 to 

1.20 or more. The research giving rise to those values has primarily focused on US 

Department of Defense (DoD)-heavy datasets, whose projects tend to be much larger 

than the ones in ISBSG. Our results suggest that the usual DoS construct may be 

 

 

43 This raises an interesting possibility: is the distribution of Size log-lognormal? In other words, would 
twice taking the natural log of Size yield a normal distribution, so that LN(Size) is itself lognormal? 
 
44 Indeed, we calculated skewness and kurtosis (tail-heaviness) values for log-Size, log-Effort, and log-
Productivity. Based on these attributes, each log-space distribution tested as normal (implying that each 
distribution is lognormal), except for log-Size, which has a skewness value too high (too right-skewed) to 
support normality. In other words, Productivity could be thought of as the ratio of a log-lognormal variable 
(Size) to a lognormal variable (Effort). 
45 See CEBoK, CEBoK-S, and others. 
46 COCOMO II default 
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inappropriate for smaller projects. In fact, EoS may prevail for smaller projects, with 

CRS and ultimately DoS prevailing as Size increases. In other words, the scale 

exponent b may itself vary with Size.  

In the table below, we calculated a and b values for various subsets of the ISBSG 

dataset, fitted based on the loglinear regression Effort = a*Sizeb.  
Table 20: Fitted Values of a (Intercept) and b (Log-Space Slope) by Size Bucket 

Size Category AFP Range Number of Projects (n) b Ln(a) a 
All data 7 to 2,048 875 0.845 3.093 22.03 
Small  
(lowest third) 7 to 70 567 0.181 5.744 312.29 

Medium 
(middle third) 71 to 115 549 1.131 1.882 6.57 

Large (highest third) 116 to 2,048 559 0.854 3.029 20.67 
Lower Half 7 to 87 839 0.680 3.754 42.71 
Upper Half 88 to 2,048 836 0.776 3.473 32.22 
Smallest projects 7 to 50.76 29 -0.284 7.481 1,774.66 
Largest projects 522 to 2,048 30 1.081 1.570 4.81 

 

The table suggests that b increases as size increases. The very smallest projects 

exhibit a negative b value47; intermediate projects exhibit a b value that is positive, but 

less than one (indicating EoS); the very largest projects exhibit a b value that is greater 

than one (indicating DoS). This is consistent with standard economics textbooks, in 

which EoS occurs at low quantities, slowly changing to DoS at large quantities48. This 

idea is so fundamental that it’s part of almost any introductory economics curriculum. 

Why should software development be different? This is suggestive that the idea of DoS 

“everywhere and anywhere” may be misplaced. Future research could focus on 

exploring whether, and how, b varies with size.  

 

 

47 This suggests that effort declines, in absolute terms, as size increases, for very small projects. The idea 
is not as crazy as it may initially sound. A very small software project might have only one developer who 
may have weaknesses and related struggles with parts of the code. A slightly larger project may add a 
second developer, where each developer can focus on their respective strengths, so that total effort is 
lower for the second project. 
 
48 See, for example, https://www.repetico.com/card-72057429, for a homework-oriented “flashcard” 
demonstrating this idea. 
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This future research would be especially important for ICEAA, as it grows its 

international stakeholder base, since many non-US projects are smaller than traditional 

DoD-oriented projects. 
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Acronyms and Abbreviations 
(A)FP  (Adjusted) Function Points 
CADE  Cost Assessment Data Enterprise 
CDF  Cumulative Distribution Function 
CEBoK(-S) Cost Estimating Body of Knowledge (for Software) 
COCOMO Constructive Cost Model 
COSMIC Common Software Measurement International Consortium 
CRS  Constant Returns to Scale 
CSS  Chi-Square Statistic 
CV  Coefficient of Variation 
DoD  Department of Defense 
DoS  Diseconomies of Scale 
EER  Effort Estimating Relationship 
EM  Effort Multiplier 
(E)SLOC (Equivalent) Source Line(s) of Code 
EoS  Economies of Scale 
EVM  Earned Value Management 
FPA  Function Point Analysis 
ICEAA International Cost Estimating and Analysis Association 
IFPUG International Function Point Users Group 
ISBSG International Software Benchmarking Standards Group  
LN  Natural Logarithm 
MH  Man-Hour(s) 
MLE  Maximum Likelihood Estimation 
MoM  Method of Moments 
MS  Microsoft 
NCCA  Naval Center for Cost Analysis 
P/E  Price to Earnings 
PDF  Probability Density Function 
PDR  Project Delivery Rate 
PERT  Program Evaluation Review Technique 
PM  Person-Month(s) 
ROI  Return on Investment 
ROM  Rough Order of Magnitude 
SME  Subject Matter Expert 
SSE  Sum of Squared Error 
StDev  Standard Deviation 
SWEET Software Effort Estimating Tool 
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