
1

Sizing Agile Software Development Programs

\

Authors

Bob Hunt, NSI
Heather Meylemans, NAVAIR
Denton Tarbet, NSI
Chad Lucas, NSI
Rainey Southworth, NSI

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

2

Outline

• AGILE DEVELOPMENT Overview
• FUNDAMENTALS OF SOFTWARE

ESTIMATION
• TYPES OF SIZING
• PHYSICAL SIZING
• RELATIVE SIZING
• FUNCTIONAL SIZING
• CONCLUSIONS

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

3

What Is Agile

• “Agile,” includes all forms of Agile and iterative development.
• Stories, features, story points, and feature points used to reflect

the same concept
– Recognizing that a “feature” typically may be used in a different context than a

“story.”
– Specifically, in large federal programs, “features” generally represent a larger

concept than “stories.”
– We believe the application of estimating, management, and tracking practices

can significantly and positively impact the success and cost of federal
programs.

• Two classes of federal agile software development programs
– Programs that are evolving on an incremental basis that generally follow the

commercial Agile practice
– Large “transformational” programs creating completely new capabilities.

• In these “transformational” programs a “Hybrid-Agile” approach is often
applied with longer sprints and larger conceptual stories/features.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

4

Agile is a Mindset*

• Agile refers to the methods and best practices for organizing
projects based on the values and principles documented in the
Agile Manifesto.

• No one way to implement Agile
– Kanban
– Scrum
– Extreme Programming (XP)
– Feature-driven development
– Dynamic Systems Development Method
– Crystal
– Lean
– Adaptive Project Framework

* From David DeWitt of Galorath

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

5

Practical Applications of Agile
Full or Hybrid Agile (Water-Scrum-Fall) Development

Agile

Testing and
Sustainment
(sometimes in the
Sprint sometimes a
separate activity)

Two classes of Federal programs
• Incremental programs – Full Agile

• Follow the commercial Agile practices
• Small user stories
• Single sprint, or even multiple user stories being

completed in a single sprint
• Generally, not applying a full EVM process

• Transformational programs – Hybrid Agile
• Creating completely new capabilities
• “Hybrid-Agile” approach applied

• Longer sprints
• Larger conceptual stories/features
• Full EVM process.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

6

Agile Software
Development Metrics*

• Attempts to quantify the cost of software failures don't agree on
percentages, but they generally agree that the number is large.

• The Standish Chaos Report is probably the most well-known of these
studies. It defines success as projects delivered within budget, on
schedule, and with expected functionality.

– Agile is an increasingly popular software building methodology
– At least 71% of U.S. companies are now using Agile.
– Agile projects have a 64% success rate
– Waterfall only has a 49% success rate.
– Agile projects are nearly 1.5X more successful than Waterfall.

– Scrum is the most popular Agile framework, with 61% of respondents from 76
countries reporting that they use it

• Agile is better; but still not great

*Jack Flynn, 16 Amazing Agile Statistics (2023),

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

7

Estimating Methodologies

Methodology 1: Many Agile programs are fixed price (labor rates times quantity)

Methodology 2: Simple Build-up approach based on averages can be defined as:
Sprint Team Size (SS) x Sprint Length (Sp time) x Number of Sprints (# Sprints)

Methodology 3: Structured approach based on established “velocity” – most often
used internally by the developer since detailed/sensitive data are available to them
– need several iterations

Methodology 4: Automated Models (NEMO, SEER, COCOMO, TruePlanning,
SLIM, …) approach based on a size metric (Physical, Relative, or Functional size)

– Assume there is a fixed relationship between size and effort, e.g. Effort =A*(Size
Metric)^B*C where A is a constant, B is the non-linear scaler, and C is a combination
of Environmental factors

– Results are then modified by current trends and analyses
– Total effort can be distributed by a mathematical model; e.g. Weibull, Rayleigh

Methodology 5: Analogy/Factor/Complexity approach based on data generated in
experience or actual iterations, e.g. T-Shirt, …

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

8

Fundamentals of
Software Estimation

• In the late 1960’s and early 1970’s, analytic equations based on
Lines of Code data were derived by Putnam, Jenson, Boehm,
Galorath, and others.

• There was general agreement that effort was a function of size;
– Effort (months)=A*(size of the program)**B

– Early COCOMO formula, E=3.2*(KSLOC)**1.05

(Today the exponent varies in commercial models from about 0.9 to 1.2).

• Over time databases, software tools, productivity factors, and
complexity factors have significantly effected the fundamental
estimation equations and the models have become more complex.

• Automated models are adjusted to account for Agile practices.

• SEER and TruePlanning examples are presented in the backup.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

9

Model Estimation Summary

• Size is a key input
• Over time factors related to complexity and

productivity have become a greater influencer in the
models.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

10

Three Broad Categories
of Software Size

• Physical Size – Source Lines of Code (SLOC)
• An objective measure

• Highly dependent on language and programmer skill

• Generally rejected by Agile developers since developed and designed for the
Waterfall development method.

• SLOC counts can be automated reliably for historical data collection.

• Relative Effort Size
• Story Points, T-Shirt Sizing

• Relative measure determined by Software Developers

• These measures are generally familiar to Agile Teams

• Functional Size
• Objective Size measure, standardized

• Can be independently estimated

• There are multiple Functional Sizing Metrics
.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

11

Size Continues to be a Driver
in Software Effort Estimation

Functional Size
• IFPUG
• COSMIC
• NESMA
• Simple
• …

Use Cases

T-Shirt Sizes

BUT
Environmental, Productivity, Complexity,

and other effort drivers are critical.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

12

Physical Sizing
• Source Lines of Code (SLOC): the total number of lines of source code

in a project – KSLOC, ESLOC, … (be sure your code measure is the
same one used in the model)

• Can use code counters like USC’s UCC or the Government (UCC-G)
• SRDR is a good data source
• Advantages:

• Accepted and is used in many automated models like COCOMO
• SLOC is easily quantified
• SLOC is being used today to successfully estimate and manage Agile programs

• Disadvantages:
• Different programming languages, programmer experience, and automated tools effect

the code count
• When platforms and languages are different, LOC can be difficult to normalize
• For new programs, SLOC must be estimated; usually by analogy to similar programs

• Size is normally estimated as low, most likely, and high number
• Therefore, a distribution can be developed to estimate at the desired

confidence level, e.g., the 70% level

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

13

Relative Effort Size

• Relative Effort Size is determined by the development team
• Common relative measure are Story Points, Feature Points, Epics,

T-Shirt Size, Use Case, User Stories, …
• The effort associated with each of these measures is based on

expert opinion or analogy from previous work
• Advantage

– These are metrics that software developers are familiar and comfortable
with

– They are typically project or team specific
– They have been successfully applied (example on the following slides)

• Disadvantage
– There is often no “formal”/consistent methodology
– They often only reflect effort directly related to coding
– It is difficult to extrapolate from project to project and especially for

organization to organization due to process improvements and old data
– Limited historical databases

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

14

Successful Relative Effort Size
Example

• In a recent large Federal Agile development program, the T-Shirt hour estimate was
compared to SEER-SEM hour estimate – when the estimates were reconciled there
was a 5% difference in the total hours estimated

• A consistent methodology was applied.

• RECENT USAF SME ESTIIMATES:S = Small (320 Hours); M = Medium (1600
Hours); L = Large (2880 Hours), and XL = Extra Large (6400 Hours)

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

15

Functional Size

• Functional Size Measurement (FSM) is a technique for
measuring software in terms of the functionality it delivers

• Functional Size is primarily used at the planning stage for input
into project resource estimation calculations for cost, effort and
schedule

• There are multiple Functional Sizing Metrics - COSMIC -
IFPUG/SFP (SiFP) − NESMA

• There are minimal differences between the various size counts

• International Function Point User Group (IFPUG) has been the
most common functional size measure in the U.S.

• Recently, IFPUG adopted Simple Function Points (SFP or SiFP)
and this measure is quickly gaining traction in the estimating
community

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

16

Functional Size

• Advantages
• Independent of the technology
• Estimated from statements of early requirements
• Objective, repeatable and verifiable
• Enables benchmarking

• Disadvantages
• Can require people with the expertise to carry out this

activity.
• Can take some time and has associated costs

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

17

Simple Function Points
SFP

• The Simple Function Point method estimates a software’s functional
size based on quantifying its business functions / transaction types,
system interfaces, and other functional requirements from high-level
acquisition documentation

• The SFP method developed by Italian researchers and acquired by
IFPUG in 2019 (https://www.ifpug.org/ifpug-acquires-the-simple-
function-points-method)

• The SFP count can be performed quickly and early in a program’s
lifecycle using existing documents

• Focuses on two elementary processes – transactions and logical
data groups

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

https://www.ifpug.org/ifpug-acquires-the-simple-function-points-method
https://www.ifpug.org/ifpug-acquires-the-simple-function-points-method

18

Simple Function Point Analysis
(Validated by a DHS Study referenced below)

• 2022 study of 15 DHS IT systems and 3
DoD IT systems

• “Based on the comparison of effort models,
although all models passed the criteria for
statistical significance, simple function
points, unadjusted function points, and
functional requirements are stronger
predicters to development effort than
stories, story points, or issues“

• Simple Function Points produced the
highest adjusted R-squared value indicating
a very strong predictive capability

“Lets Go Agile: Data-Driven Agile Software Costs and Schedule Models for DHS Projects”, ICEAA 2022, Wilson Rosa, Sara Jardine,
Kimberly Roye, Kyle Eaton, and Chad Lucas

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

19

Military Requirements
• Capers Jones, Estimating Software Costs, Second Edition, page

389
“Military software requirements are usually the most precise and exacting of any class of
software. This is due to the long-standing requirement of traceability…. Although these
military requirements documents are large and sometimes ambiguous, the specificity and
completeness of the military software requirements makes it easier to derive function point
totals than for any other kind of software application.”

• Might question this for emerging DoD programs. In those
programs capabilities are defined, developmental requirements
are derived by developer to best provide the capability and then
demonstrations are provided to validate the capability.

• Most models that backfire use the Unadjusted (raw) function
point count and allow the estimate to take care of the non-
functional (SNAP) requirements.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

20

Automated FP Counters

• Automated Function point counters use AI (Natural Language
Processing (NLP) and a robust rules set to reduce the time it takes to
inspect and estimate the functional size of each requirement.

• The DHS CADE Simple FP model, SISe, has a list of 143 keywords.
• Two examples are ScopeMaster and Cadence, the actual lists are

product sensitive and are revised annually.
• The automated counting models do the initial heavy lifting, but some

manual review is required.
– Often a large number of military requirements show a “zero”

function count when there is obviously work required.
– A recent large Federal program had a manual function count of

over 25,000 and the initial automated count was about 18,000.
– When the ”zero” elements were evaluated the two counts came

within 8%

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

21

Cost to Calculate Function Points

• A “Certified” function point counter (IFPUG, COSMIC, Nesma) is
estimated at $100 to $200 an hour.

• Assume 15 IFPUG FP/Hr (from Capers Jones)

• Then the cost per function point is between $7 per and $14 Per
Function Point

• Therefore a 10,000 IFPUG count should cost between $70 K
and $140 K

• Experience shows that a SFP count takes significantly less time
than a full IFPUG count, and an automated counter would
reduce the time even further.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

22

Functional Size Issues
• Once the Function Point Count (FPC) is established, the count must be

converted in effort hours/person months, etc.
– International Software Benchmarking Standards Group (ISBSG) offers a good

commercial database (it may contain only successful projects)

– Currently no large Federal/National Security database is available. (The SRDR
is beginning to collect this data.)

– Analogy to similar programs

– Most commercial models “backfire” the FPC into SLOC.

• When the FPC is completed, some requirements will have a “0”
FPC. Items such as documentation or meeting a certain developmental
standard do not require end user interaction and, as such, are not
functional. There is, however, effort associated with these requirements
as they add complexity to the overall work effort.

– Most software cost estimating models, account for these hours from the
parametric estimating equations derived for their historical data base.

– Non-model users might utilize tools like SNAP to account for these non-
functional hours.

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

23

Backfiring FP to SLOC

• There are multiple data sources (Capers Jones, Galorath QSM,
Unison) that offer backfiring tables.

• Correct backfiring requires different metrics for each type of FP
(Applied Software Measurement 3rd Edition,, Capers Jones, page 80)

• Below is a partial table from QSM

• For 3rd Generation Languages, 50 SLOC per FP is often used

QSM SLOC/FP Data
Language Avg Median Low High
ABAP (SAP) * 28 18 16 60
ASP* 51 54 15 69
Assembler * 119 98 25 320
Brio + 14 14 13 16
C * 97 99 39 333
C++ * 50 53 25 80
C# * 54 59 29 70
COBOL * 61 55 23 297

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

24

Summary/Recommendation

Summary
• All size metrics can provide meaningful estimates when used appropriately

– The team documented the successful utilization of SLOC, FP, and
T- Shirt sizing in recent Agile Development Programs

• It is important to ensure an Apples-to-Apples comparison is made
• Successful models (like the Navy’s NEMO) took a basic estimating model

(COCOMO) and built a specific database to estimate their programs
• No direct FP to hours model exists, although Boehm Center for Systems

and Software Engineering (BCSSE) at USC is working on a COCOMO III
release addressing the conversion from Function Points to hours

Recommendations
1. Develop a model with a formulation something like; Effort = A(FP)^b)C

Where: A = a “complexity” modifier
 FP = number of function points
 b = a derived exponent
 C = a “productivity” modifier

2. Develop/validate a National Security FP database

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

25

Backup

• BACKUP SLIDES

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

26

SEER by Galorath

Model is based on the Jensen SEER/Sage equation
 SE = CTE * (K)1/2 * td

Where: SE = Product Size in ESLOC
 CTE = Effective Technology Constant (based on cost driver
inputs)
 K = total software life-cycle effort in person-years
 td= development time in years

Software development effort = 0.3945 * K

SEER Effort Formula: K = (SE / (CTE)(td))2

SEER Schedule Formula: td = D-0.2 (SE / CTE)0.4

Where:
D = Staffing Complexity Constant (i.e., How hard is it to get the staff
required to code this type of software?). Note that the default value for D
= 15

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

27

Unison Cost Engineering
TruePlanning for Software

TruePlanning® CER:
𝐸𝐸𝑓𝑓𝑓𝑓𝑜𝑜𝑟𝑟𝑡𝑡 (𝐻𝐻𝑜𝑜𝑢𝑢𝑟𝑟𝑠𝑠) = 𝐴𝐴 ∗ 𝑆𝑆𝑖𝑖𝑧𝑧𝑒𝑒 ^𝐵𝐵

 Where:
A = influence of the drivers in the model (Functional Complexity,
Technology, People, Reuse, Organizational Productivity, etc. - 33
numerical cost drivers + 10 nominal cost drivers)
Size = software size in specified Size Units (SLOC, IFPUG FP, COSMIC FP,
etc.)
B = economy or diseconomy of scale as a function of Organizational
Productivity (B ranges between 1.077 and 1.117)
Example: Military Avionics in SLOC with default values: 𝐸𝐸𝑓𝑓𝑓𝑓𝑜𝑜𝑟𝑟𝑡𝑡 = 0.252 ∗
𝑆𝑆𝑖𝑖𝑧𝑧𝑒𝑒 1.107

𝑆𝑆𝑐𝑐ℎ𝑒𝑒𝑑𝑑𝑢𝑢𝑙𝑙𝑒𝑒 (𝑀𝑀𝑜𝑜𝑛𝑛𝑡𝑡ℎ𝑠𝑠) = 𝐶𝐶 ∗ 𝐸𝐸𝑓𝑓𝑓𝑓𝑜𝑜𝑟𝑟𝑡𝑡 ^0.33
Where:
C = efficiency/inefficiencies in developing the software based on model
inputs (Functional Complexity, Technology, People, Organizational
Productivity, etc., 33 numerical drivers and 19 nominal drivers – C ranges
from 0.41 to 0.9)

Presented at the ICEAA 2024 Professional Development & Training Workshop - www.iceaaonline.com/min2024

	Slide Number 1
	Outline
	What Is Agile
	Agile is a Mindset*
	Practical Applications of Agile�Full or Hybrid Agile (Water-Scrum-Fall) Development
	Agile Software �Development Metrics*
	Estimating Methodologies
	Fundamentals of �Software Estimation
	Model Estimation Summary
	Slide Number 10
	Size Continues to be a Driver�in Software Effort Estimation
	Physical Sizing
	Relative Effort Size
	Successful Relative Effort Size Example
	Functional Size
	Functional Size
	Simple Function Points�SFP
	Simple Function Point Analysis�(Validated by a DHS Study referenced below)
	Military Requirements
	Automated FP Counters
	Cost to Calculate Function Points
	Functional Size Issues
	Backfiring FP to SLOC
	Summary/Recommendation
	Backup
	SEER by Galorath
	Unison Cost Engineering�TruePlanning for Software

