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Incomplete
data

Missing data and
meta data,
unrecorded data,
accessibility.

Lack of
standardisation
Terminologies, cost
metrics, cost
measures, currencies,
data collection
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Inaccurate
data

Incorrect cost
values, currencies,
use, outdated

Data
Fragmentation

Multiple sources, lack
of integration - siloed
systems

Duplicate
data

Poor data
integration, lack of
unique ID for cost
items

Unclear data

ownership .
Lack of accountability,

weak data governance
policies, lack of data
quality control
measures
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Inconsistent
data

Variation and lack
of standardisation
in data formatting,
data management

Unreliability in
data

Lack of trust,
manipulation or
corruption.
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Lack of expert
knowledge, poor
knowledge sharing

Biasin
Knowledge

Subjectivity, Personal
or organisational
biases

Imprecision

Knowledge
Fragmentation

Knowledge exists
across different
teams, lack of
integration and
consolidation

lack of accuracy,
precision, or
specificity in
knowledge capturing,
vagueness, ambiguity
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Obsolete
Knowledge

Outdated over time
due to changes in
market conditions,
New technologies,
etc.

Overreliance

Rely too heavily on
internal historical
data, Lack of External
Benchmarking

Knowledge
Loss

Poor data
sharing

Key employees with
critical cost-related
knowledge may
leave

Asymmetric
information between
organisations, lack of
alignment between
data sharers
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* Data-related quality issues generally cause ‘aleatoric’ uncertainty

* Information and knowledge-related quality issues generally cause
‘epistemic’ uncertainty

Yu, J., Wang, D. and Zheng, M., 2022. Uncertainty quantification: Can we trust artificial intelligence in drug discovery?. Iscience, 25(8).
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Learning is a co-adaptive process in which human cognitive abilities are
used to modify the behaviour of an ML system (and vice-versa).

explains the
imputation to

Legend

enhances with N
traditional cost

knowledge ditior
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imputation
N A interactions
1s presented to 1s used to train - supported
by an ontology

estimates imputes

Relationships between the human, the ML system, and the data

Erkoyuncu, J. A., Namoano, B., & Kozjek, D. (2023). Cognitive data imputation: Case study in maintenance cost estimation. CIRP annals, 72(1), 385-388.
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Lost
Opportunity,

Degradation growth based on components’ lifedata

Degradation growth per component

Survival analysis

Reliability per companent

End-of-Life
T T T Disrupt Replace
0BC FBC Acceptance I No
Acquire  [—» Install Damage/ No——>» Operate —» Overhaul
Defect? (Parent item)
Yes Monitor & ;
Support Yes—»| Repair
System level Module level

Zhou, H., Farsi, M., Harrison,
A., Parlikad, A.K. and
Brintrup, A., 2023. Civil
aircraft engine operation life
resilient monitoring via usage
trajectory mapping on the
reliability contour. Reliability
Engineering & System
Safety, 230, p.108878.

Cranfield
University

| LPC || IPC || HPC

|| cor |

| LPT || IPT || HPT

|| ece |

ngineering and

HPT

| HPT rotor || NGV |

NGV

Dr Maryam Farsi - Cranfield University

Reliability model

v

Predicted number of overhauls caused by the component over the operating time

Deterioration
Mechanism

DM[1]

DM[2]

%

v

Component 1 Overhaul over cycles

Maintenance
intervention

MI[1]

MI[2]

DM[3]

DM[n]

MI[3]

Mi[n]

N
HEY




Presented at the SCAF/ICEAA 2024 International Training Symposium - www.iceaaonline.com/its2024

Deterioration

System level Module level Component level Maintenance

Mechanism intervention
DM[1] MI[1]
HPT NGV . DMJ[2] MI[2]
B - DM[3] i MI[3]
| o |[ e || Heo || cer | DMn] Mi[n]
| LPT || IPT || HPT || EGB | HPT rotor NGV

distance

rank

subclass

subclass L iteration
- is_similar_to

contains

subclass
has_cost v

value subclass™

cost_per

currency

date_time code name description

Cranfield igital Engineering and

University

Dr Maryam Farsi - Cranfield University




Presented at the SCAF/ICEAA 2024 International Training Symposium - www.iceaaonline.com/its2024

Physical D ata_ | Digital Twin
collection
O Y O T e — ™
Item lifecycle | .. ___ .. _ Data Architecture (Ontologies)
breakdown cost breakdown
L <] CBS |
PhaseI. | | r= == ="
Design — e — _—
........ - Parent Cost model
1 ! Item Lifecycle KD
evel Phase II: Bi-directional p qac -
System leve Develop communication Analysis NS )
Feedback for Quantity Variation || Causality || Visualization
\V 4 L tools tools tools tools
Module lovel Phase III: Optimisation
odu Operate T - v ! i
_____ - { Meaningful insights, recommendation, etc. }
o  r e— b — _ Y
1 v aC
Component Phase IV: — e — — Decision
level Retire == — Decision User
e — s — . tools Interface

Farsi, M., Erkoyuncu, J.A. and Harrison, A., 2020. A Super Simple Life-cycle Cost Estimation Model with Minimum Data Requirement. Available at SSRN 3718042.
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k-nearest neighbours (kNN) selected as the imputation method O Q

» Interpretability, explainability

» Ability to incorporate user feedback by modifying the distance metric d

\ kS

*  Imputed cost (¢;): j=1q; ;
¢j: neighbouring components l k 1

d; j : the distances between them j=1 di j

Imputer 2

. Evaluation (ability of imputation) using R? metric:

¢ : the average of the costs of all components

_ £V=1(Ci — &)*

Erkoyuncu, J. A., Namoano, B., & Kozjek, D. (2023). Cognitive data imputation: Case study in maintenance cost estimation. CIRP annals, 72(1), 385-388.
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Case Study
Maintenance Data from POs

Company: Leading provider of complex engineering
services in marine and aerospace sectors across
Europe.

Business Focus: Managing high-value assets (e.g.,
ships, submarines, helicopters) with a strong
emphasis on asset management.

Key Goal: Improve asset reliability, availability,
maintainability, and safety, minimise operating costs,
and reduce time between failures.

Data Focus:
* 14,000 purchase orders related to aerospace asset spare parts.

* 70 attributes covering maintenance, operations, and financial
aspects.

Data Challenges: missing values, formatting issues,
typos, ambiguous, redundant and inaccurate data,
outliers, data out of range

Erkoyuncu, J. A., Namoano, B., & Kozjek, D. (2023). Cognitive data imputation:
Case study in maintenance cost estimation. CIRP annals, 72(1), 385-388.
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«  Component codes and descriptions as initial metrics of similarity.

* To be improved via XIL, ontology.

a) Imputed vs actual costs for k=1  b) R? for different values of k An analysis of kNN imputation
~ JR SERF- Y using the Levenshtein distance of
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~  Simulation study with artificially generated users: The main goals are to evaluate the possibility of improving the system
> through interaction and to estimate how much interaction is required for the improvement.

- 100 components are selected at random and simulated to have missing cost values. In each iteration, a new, randomly
generated user is given 10 components for which they determine the cost and list similar components.

Simulated user with random inputs u(m, a) where (1 — m) is the probability that the user cost setting is sampled from a
normal distribution around the actual cost with o as the standard deviation of that normal distribution.

a) u(0.7,0.2); R2=0.125 b) 4(0.3,0.4); R*=0.799
0.9
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login imputation

evaluation statistics

json API

Django engine

custom kNN algorithm

SPARQL API

ontology

knowledge graph

An architecture for Python web-page application Examples of the GUL.
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 Four real users: 2 experts (users 3 and 4) and 2 non-experts with limited knowledge (users
1 and 2)

 The scores show an increasing trend over time, indicating an improvement in the
estimates and the underlying human understanding of the data.

1.0
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0.6 —o— User1l
—— User 2

0.4 j —v— User 3
—+— User4
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R2[/]
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An example of four users’ cost estimation showing both user and algorithm improvement.
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* Focus: Tackles both aleatoric and epistemic data uncertainty challenges in
cost estimation.

* Traditional Approaches: Previous methods relied heavily on existing data,
missing the benefits of expert human input for improving estimates.

 Case Study: Applied to an aerospace maintenance case with 14,000
procurement-related data entries to address data uncertainties in cost
estimation.

* Approach: Cognitive data imputation using Explanatory Interactive machine
learning

* Results: the results confirmed complementary improvements in cost
estimation, integrating user expertise with machine learning (ML) based
imputation techniques.
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Thank you

Dr Maryam Farsi

maryam.farsi@cranfield.ac.uk
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