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Abstract: In this paper, the development of model inputs with specified correlation is explored. Input 

variable correlation is an influential driver of final cost risk distributions; especially so for highly positively 

or negatively correlated inputs. If not captured appropriately between inputs, significant errors in resultant 

cost risk distribution will occur. In general, the further away from a 50% confidence level cost value, the 

greater the error will be when input data does not reflect accurate correlation. The widely adopted Iman-

Conover (IC) Method for inducing desired rank correlation on a multivariate input for modeling by Monte 

Carlo simulation is reviewed. The IC method culminates in the re-ordering of the values of each input vector 

such that the resultant correlation of the vectors is close to the desired correlation. This paper provides 

insights into how the IC Method, devised as a method for inducing a desired rank correlation, can be equally 

if not more powerful for inducing desired Pearson product-moment (linear) correlation on inputs. 

Spearman’s rank correlation and linear correlation values that result from the IC Method are compared to 

the desired correlation values ranging from -1 to 1. Insights into the mechanics of the algorithm are 

presented in order to provide a richer understanding of the process and to inform aspects of work when the 

algorithm is employed. Extending this IC method to an iterative process described in this paper shows that 

the resulting set of variates would more accurately reflect the desired correlation in all cases for the 

calculated linear correlation. Conversely, for highly skewed distributions, the iteration process resulted in 

increasing the error of the calculated Spearman’s rank correlation. The iteration process is explained with 

examples to illustrate improved linear correlation accuracy for both symmetric and highly skewed 

distributions. 

Most cost risk and statistical software platforms 

on the market today permit the user to define the 

distribution type of each input variable as well as 

the correlation between these variables. Common 

forms of quantifying correlation include Pearson 

product-moment (linear) correlation and 

Spearman’s rank correlation. Using linear 

correlation with input variables that have outlier 

or clustered data; or have unusual forms of 

distribution may not appropriately quantify the 

relationship between variables (Tamhane, 2000). 

For those input relationships that are not 

monotonic or which depart significantly from a 

linear relationship, Spearman’s rank correlation 

metric may be the more appropriate measure. 

Accurately quantifying the correlation of input 

variables of the phenomenon, stochastic process 

or estimate being modeled is a well-recognized 

and necessary element of increasing the accuracy 

and realism of resultant risk distributions and 

cost estimating results. Inaccurate correlation 

values exacerbate cost risk distribution errors 

that are further away from 50% confidence level. 

In the simplest terms, the final cost risk variance 

is inflated or contracted with inaccurate input 

correlation. It is important to note that the IC 

method culminates in the reordering of the 

original set of input variates based on the rank 

order of a resultant linear transformation they 

undergo. This linear transformation is based on 

the desired correlation matrix of the inputs; 

which may be defined as either linear or rank 

correlation. In either case, the efficacy of the IC 

method is considered in this paper by how close 

the resultant linear and rank correlation is to the 

specified desired correlation. The ability to 
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perform this work independent of embedded 

software features can be useful; as well as 

beneficial to understanding any limitations of the 

process that apply in practice. 

Richard L. Iman and W. J. Conover published a 

paper in 1982 entitled A Distribution-Free 

Approach to Inducing Rank Correlation Among 

Input Variables. Consider, for example, M input 

vectors to represent M variables in a cost model. 

Each of the M vectors contain N values for a 

model run to be performed with N iterations. 

Assume the correlation between all M input 

vectors is known. Iman and Conover devised a 

powerful and effective methodology that 

culminates in the reordering of values of all but 

the first input vectors such that the resulting 

correlation of these reordered vectors is very 

close to the desired correlation. Once reordered, 

these vectors are then used as appropriate inputs. 

The following summarizes the steps of the IC 

Method. Of note, Stephan J. Mildenhall provides 

an expanded treatment of the IC Method in his 

paper, Correlation and Aggregate Loss 

Distributions With An Emphasis On The Iman-

Conover Method presented in 2005. 

Assume a model requires M input variables; each 

with N values for a model run of N iterations. Let 

[A] represent the set (or matrix) of input 

variables of size N (rows) by M (columns). For 

illustrating the IC method, the distribution type of 

each input is not significant. In this paper, the 

inverse of the cumulative distribution function of 

each input variable is known. This is used to 

determine the elements of each input vector as 

van der Waerden scores where the ith element of 

the jth variable in [A] is initially determined as 

follows. 

 

The desired correlation matrix must be positive 

semi-definite to enable a tractable 

decomposition. Define the desired input vector 

correlation matrix as [S]. It is of dimension M by 

M. Zero-mean and scale each of the input vectors 

such that the variance is 1. This transforms [A] to 

what is now defined as [X]. At this point, each 

vector is ordered from lowest to highest rank by 

virtue of their derivation as van der Waerden 

scores. The IC method requires linear 

independence of the input vectors. To invoke this 

linear independence, randomly permute each of 

the input vectors. This is not necessary for the 

first vector as it is unaffected by the IC method. 

Now define a new matrix [E] as the covariance of 

[X]. 

 

Since the vectors of [X] have zero mean and 

variance of 1, [E] represents the linear 

correlation matrix of [X] and should have low 

absolute values off-diagonal due to the prior 

random permutation of the vectors that induced 

linear independence. The next step is to apply a 

Cholesky Decomposition to [E]. 

 

[F] is an upper triangular matrix and represents 

the square root of [E]. As a square symmetric 

matrix, [E] can be transformed to [L][D][L]T 

where [L][D(.5)] is the lower triangular matrix of 

the decomposition and equals [F]T. Cholesky 

decomposition would fail with any of the 

diagonals of [D] less than zero (i.e. Not positive 

semi-definite). A significant facet of this 

decomposition can be shown as follows: 

 

 

 

This shows that pre-multiplying the covariance 

matrix of [X] by the inverse of the [F]T and post-

multiplying by the inverse of [F] give the identity 

matrix. 
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To incorporate the desired correlation, a similar 

Cholesky decomposition is performed on the 

desired correlation matrix [S] where 

 

Now consider inserting the identity matrix 

between the two [C] matrices without effect. 

 

It was shown above that pre and post multiplying 

[X]T[X]/N by the inverses of the Cholesky 

decomposition of [X] results in the identity 

matrix, [I]. Replacing [I] in the equation above 

with that identity gives the following. 

 

This shows us that multiplying the randomly 

permuted starting vectors of [X] by [F]-1[C] 

results in a set of vectors with a calculated linear 

correlation that exactly matches the desired 

correlation, [S]. 

For convenience, the new transform matrix [T] is 

defined as follows. 

 and define , 

then 

 

However, since each vector (column) of [X’] is a 

linear combination of the vectors of [X], the 

original distributions are no longer preserved. 

That is, the desired correlation is achieved, but no 

longer with the original values that comprised 

the vectors of [X]. It is noteworthy that the 

variance of each vector of [X’] is 1 since the 

covariance of the [X’] matrix is [S]. 

At this point, Iman and Conover capitalize on the 

connected relationship between Spearman’s 

Rank correlation and linear correlation where the 

rank correlation is the linear correlation of the 

ranks of the values that comprise the vectors. As 

the next step in the IC method, the elements of 

each of the variates of [X] are reordered to have 

the same rank ordering of the corresponding 

vectors of [X’]. This generally results in a 

correlation of the re-ordered vectors that is close 

to the desired correlation prescribed in [S]. Since 

these data were zero-meaned and rescaled to 

have a variance of 1 for the IC method, one needs 

to simply reverse the process to regain the 

original distribution that is now re-ordered for 

the desired correlation. 

By way of example, consider a matrix [A] that 

contains three input vectors of 30 elements each 

(not shown). Each are sampled as van der 

Waerden scores from a normal distribution with 

zero mean and are normalized to have a variance 

of 1. With a zero mean and variance of 1, [A] 

becomes [X], and is of dimension 30 X 3. In this 

case, each input vector of [X] is identically 

distributed. 

The second and third vector are randomly 

permuted so that columns of [X] are linearly 

independent. Once accomplished, determine the 

linear correlation matrix of [X], defined as [E].  

The upper Cholesky decomposition of this 

correlation matrix, [E], and its inverse are as 

follows. 
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A positive-definite desired correlation matrix, [S], 

is developed for this example and its upper 

Cholesky decomposition are shown as follows. 

We now have the information to produce the 

transform matrix [T] where [T] = [F]-1[C]. 

The next step is to multiply [X] by [T]; resulting in 

[X’]. The resulting covariance matrix of [X’] (1/N * 

[X’]T[X’]) now equates to [S] precisely.  

As discussed before, [X’] is a linear combination 

of the vectors of [X] and all but the first vectors of 

[X’] now have a different distribution than that of 

the [X] vectors. Per the IC method, each vector of 

[X] is reordered to have the same rank order as 

the corresponding vector of [X’]. 

The following shows the Resultant linear and 

Spearman’s rank correlation matrices based on 

the reordered vectors of [X]: 

 

 

 

The resultant rank correlation of [X’], and by 

process, the rank correlation of the reordered 

vectors of [X] are close to, but do not match the 

desired correlation, [S], precisely. Similarly, the 

linear correlation of the reordered elements of 

[X] is close to, but does not match [S] precisely. As 

will be seen, larger values of N, which are 

typically employed in practice, result in much 

closer alignment with the desired correlation 

matrix. 

 

Exploring the IC Method 

In the following, the IC method is applied to two-

vector input matrices (i.e. two input variables) of 

various sizes (N). This facilitates a more tractable 

analysis and the concepts apply to M dimensional 

input matrices. The difference between the 

desired correlation as prescribed in [S] and 

resultant correlation (both linear and rank 

correlation) from the reordered elements of [X] 

will be considered; as well as means to reduce 

this difference. 

A 4 X 2 input matrix is considered first. From a 

Euclidean space construct, [X] spans 4 

dimensions (N) and is of rank 2 (M=2); provided 

the vectors are linearly independent. There are 4 

factorial (4! or 24) different permutations of the 

second vector that is reordered in the process. 

When the values of each input vector are viewed 

as coordinates, each of the permutations of the 

second vector occupies a discrete point in N-

dimensional space and each also has its own 
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correlation value with the first vector. In this case 

of input vectors, the first is derived from a normal 

distribution and second is a skewed distribution. 

There are 24 unique linear correlation values and 

11 unique rank correlation values with the first 

vector from all possible permutations of the 

second vector. These permutations represent a 

constellation, as it were, of 24 discrete points at a 

Euclidean distance of the square root of N from 

the origin due to a variance of 1. 

Consider a randomly permuted second vector of 

[X] and the notion that the IC method can be 

applied for any desired correlation value between 

the vectors of [X]. Recall that [X’] = [X][T] gives 

the exact desired correlation, but no longer 

possesses the original distribution of values. 

There is a continuum of the second vectors of [X’] 

associated with each value within the range of 

desired correlation values from -1 to 1 since. The 

second vector of [X’] is a linear combination of 

the two vectors of [X] as determined by [T]. This 

continuum of [X’] spans a plane (or arc) of the 

continuous N dimensional space subtended by 

the vectors of [X]. This subspace is referred to 

herein as the [X] subspace. In the last step of the 

IC method, the re-ordered second vector of [X] 

becomes one of the 24 possible permutations 

(and one of the 24 possible linear correlations) 

that is near the [X] subspace because the re-

ordering is based on the rank of the second 

vector of [X’]. This does not allow for a 

permutation that may result in a correlation 

value closer to the desired correlation but is in a 

region away from the arc of the [X] subspace. 

Accordingly, the initial random permutation of 

the vectors of [X] pre-determine the [X] subspace 

and possible resultant correlation values.  

Similar to the vectors of [X] and [X’], consider 

now all other possible points in the continuum of 

N dimensional space that are a distance from the 

origin of square root of N and whose mean is 

zero. This continuous collection of points is 

comprised of bounded and connected regions of 

all possible coordinate rank orders. Since there 

are N factorial possible permutations of a vector 

(or set of coordinates) of dimension N, there are 

N factorial regions whose coordinates have the 

same rank order. Each of these regions is referred 

to as a rank order region. Each rank order 

region is defined by the rank order of the values 

in the vector that map to that region. For 

example, where N = 4, the vector comprised of 

the following values in the order shown is 1423, 

{-0.780, 1.724, -0.575, -0.439}. Provided that all 

values are unique in a vector of [X], each 

permutation resides as a discrete point within 

each of these regions. The IC method determines 

in which regions the re-ordered vectors of [X] 

reside by virtue of the rank order of vectors in 

[X’].  

To illustrate these concepts, principal component 

analysis was employed for the dimensional 

reduction of all possible permutations of the 

input vector that spans 4 (N) dimensional space. 

The points were mapped to 3 dimensions and are 

shown below from a perspective angle with the 

background walls and floors aligning with the 

Cartesian coordinates. There was no loss of 

information in the dimensional reduction 

because each vector has a mean of zero and 

variance of 1. Hence, each vector represented as 

point in 3-D space is equidistant from the origin. 

Further, all possible vectors of N equals 4, of zero 

mean and variance of 1 occupy the surface of a 

sphere of radius 2 in this 3-D space. In general, all 

possible real numbered vectors of dimension N 

with zero mean and constant variance will 

occupy an N-2 dimensional subspace. 

Figure 1 below is a graphic that shows the 

boundaries of all 24 rank order regions. Figure 2 

shows only the front facing rank order regions for 

illustrative purposes. The points shown represent 

permutations of a single vector. In this example, 

the vector is {-0.710, -0.575, -0.439, 1.724}. Of 

note, these permutations derived from a skewed 

distribution are located near a corner of each 

region. Each of the 24 permutations occupies one 

point in each of the rank order regions. 
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Figure 3 is a plot of four different vectors of N = 4 

with rank order 1234. Figure 4 shows where each 

of these map to a point in the rank order region 

1234. It is then shown where each of these map 

to a point in the rank order region 1234. Of note: 

the point in the center is the geometric center of 

the corners of the rank order region. It was 

determined that the four values of the vector 

associated with this point are very close to those 

values derived as van der Waerden scores from a 

normal distribution. 

Using the construct developed above, the 

following is a graphical illustration of the IC 

method starting with [X] comprised of 2 vectors 

of N = 4. The first vector is derived from van der 

Waerden scores from a normal distribution and 

the second vector, as shown above, is comprised 

of {-0.439, 1.724, -0.575, -0.780} with starting 

rank order 3421. The desired correlation is -

0.2225. The linear correlation of the starting 

vectors of [X] is -0.326; reflecting an absolute 

error from desired correlation of .103.  

Figure 1 

Figure 3 Figure 4 

Figure 2 



97 Journal of Cost Analysis and Parametrics: Volume 10, Issue 1. October 2021 

Improvements on the Development of Correlated Input Variables for Monte Carlo Simulation Douglas Henke 

• The blue vector emanating from the center 

represents the first vector in [X]. As a vector 

derived from van der Waerden scores from a 

normal distribution, this point is in the center 

of the region with rank order 1234. 

• The second vector of [X] is represented as the 

lower of the two red vectors. It occupies the 

lower left rank order region shown of rank 

order 3421. 

• The green curve is the locus of all points 

mapped from the second vector of [X’] through 

correlation values ranging from -1 to 1. Recall 

that [X’] = [X][T] in the IC method where the 

second vector of [X’] is a linear combination of 

the vectors of [X]. This is the [X] subspace. 

• The yellow marker is the point on the locus of 

points that satisfies the desired correlation 

value of -0.2225 exactly. This solution of the 

second vector of [X’] is {-0.607, 1.732, -0.546, -

0.578} and is of rank order 1432. This point 

lies in a different rank order region than the 

second vector of [X]. 

• In the IC method, the second vector of [X] is 

then reordered to have that same rank order 

as the second vector [X’]. This is depicted as 

the upper of the two red vectors and is merely 

the permutation of the second vector of [X] 

with the new desired rank order. 

• The resultant correlation of the reordered 

second vector of [X] with the first vector is -

0.175; an absolute error from desired 

correlation of 0.048. 

• The following shows a clearer view of the 

region of interest. 

[X] Subspace 

To demonstrate the constraint of the reordered 

second vector or [X] to points near the [X] 

subspace, the IC method was performed on the 

4x2 input matrix over a range of desired 

correlation values from -1 to 1 in increments 

of .00125 (1/800). The first and second vectors of 

[X] applied here are the same as those used in the 

above illustration of the IC method. Now, define 

the resultant correlation error as the difference 

between the resultant correlation value and the 

desired correlation value (input to the [S] 

correlation matrix). The following graphs show 

both the resultant correlation and the resultant 

correlation error for both linear and Spearman’s 

rank correlation measures. 

Figure 5 

Figure 6 
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With only 4 values in each vector, a large error 

across much of the correlation range from -1 to 1 

would not be unexpected. However, more 

noteworthy as it relates to the [X] subspace 

constraint is that of the possible 24 linear and 11 

rank correlation values associated with all 

possible permutations of the second vector, there 

were only 7 distinct correlation values that 

resulted from the desired correlation values 

evaluated between -1 and 1. 

 

Correlation with N = 10, 30, 100 and 1000 

Resultant linear and rank correlation were 

evaluated in four other cases where M=2 and the 

number of values in each vector was 10, 30, 100 

and 1000. As before, the desired correlation 

ranged from -1 to 1 by .00125. These starting 

vectors were also derived as van der Waerden 

scores from a normal distribution. The starting 

vectors of [X] remained the same through the 

range of desired correlation values. The following 

shows the resultant correlation and resultant 

correlation error for N = 100. The results from 

Figure 8 

Figure 7 
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the other cases are available as supplemental 

material for this paper. 

Observations: 

• In the case of N = 10, there are 45 distinct 

resultant correlation values that are derived 

by the IC method. This is based on the same 

second vector in [X] for all desired 

correlations between -1 and 1 (evaluated at 

increments of 1/800). There are 10 factorial 

(3.63 million) possible permutations of the 

second vector of [X]. Each has a linear 

correlation value with the first vector. In this 

case, there are hundreds of thousands of 

unique linear correlation values associated 

with the 3.63 million different permutations of 

the second vector; yet only 45 resultant 

correlation values are revealed across the 

range of correlations evaluated with the IC 

method in this example; emphasizing the 

resultant correlation’s constraint to the [X] 

subspace. 

Figure 9 

Figure 10 
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• A global error is defined as the root mean 

square of each of the 801 error values for the 

linear and rank resultant correlation. The 

following table shows those results. The linear 

correlation global error is less than rank 

correlation global error for each case of N. 

Heuristically, the notion that there are more 

possible linear correlation values associated 

with all possible permutations than there are 

rank correlation values would support a lower 

global error with linear correlation. Notably 

the ratio of global errors (i.e. Rank divided by 

linear global error) increases significantly 

with N. 

Improvement over the [X] Subspace 

Constraint. 

For a given desired correlation, the reordered 

vectors of [X] can be considered to subtend a new 

[X] subspace and may be used as the starting 

point for another iteration. Recall [T] transforms 

the vectors of [X] into a set of vectors, [X’], which 

have the exact linear correlation prescribed in the 

desired correlation matrix [S]. Re-ordering the 

vectors of [X] based on the rank order of the 

vectors of [X’] is equivalent to selecting the 

permutations of the vectors of [X] that have the 

closest possible alignment to the vectors of [X’]. 

That is, the closest possible alignment to a set of 

vectors whose correlation is exactly [S] (“closest 

possible alignment” implies maximum inner 

product of the vector of [X’] and the 

corresponding re-ordered vector of [X]). 

Conversely, any permutation of a particular [X] 

vector that does not lie in the rank order region 

of the corresponding [X’] vector would be less 

aligned (lower inner product) with the [X’] 

vector; resulting in linear correlation values 

further from the desired correlation. 

Consider an input matrix of N X 2. After 

performing the IC method, the reordered second 

vector of [X] resides in a rank order region that 

results in a correlation value close to that 

prescribed in [S]. With a new [X] subspace 

defined by the reordered second vector of [X], the  

IC method is applied once more. Two alternatives 

may occur: 

• The rank order of the resulting second vector 

of [X’] remains unchanged and so there would 

be no change to the rank ordering of the 

second vector of [X]; or, 

• Based on the new [X] subspace, the rank order 

of the second vector of [X’] changes. The first 

iteration resulted in a good solution. However, 

since the second vector of [X] no longer has 

the same rank order of the recalculated 

second vector of [X’], it is less correlated with 

the revised exact solution second vector of 

[X’]. Once reordered, it becomes better 

correlated with the second vector of [X’]. As a 

result, the revised permutation of the second 

vector in [X] has a resultant linear correlation 

value even closer to the desired correlation. 

Any other permutation (particularly the 

previous one) would be less linearly 

correlated with the second vector of the 

revised [X’]. Hence, the iteration results in a 

reduction in resultant linear correlation error. 

For NX2 input matrices, iteration until 

convergence always yields resultant linear 

correlation values closer to desired with each 

iteration (when more than one iteration is 

necessary for convergence). However, it was 

found that for input matrices of N X M, M>2, 

improvements with each iteration for each 

resultant correlation matrix value does not 

always hold. It will be shown that iterating until 

convergence reflects improvements for resultant 

linear correlation; but not necessarily for 

resultant rank correlation. 

The iterative process is described as follows; 

where the subscript denotes the iteration 

number: 

 

Table 1 
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[X1][T1] = [X1’], [X1] is re-ordered based on the 

ranks of [X1’] and becomes [X2]. 

[T2] is recalculated from [X2] and [S]. 

[X2][T2] = [X2’], . [X2] is re-ordered based on the 

ranks of [X2’] and becomes [X3]. If there is no 

change in resultant correlation of the vectors of 

[X3], stop. Otherwise… 

[Ti] is recalculated based on [Xi] and [S]. 

 [Xi][Ti] = [Xi’], [Xi] is re-ordered based on the 

ranks of [Xi’] and becomes [Xi+1]. Continue 

iterating until there is no change in resultant 

correlation of the vectors. 

To illustrate this notion, the previous example 

illustrated in figure 5 serves as the starting point 

for this iterative process.  

Referring to figure 11 , the blue vector emanating 

from the center represents the first vector of [X] 

and its point lies in rank order region 1234. The 

second vector of [X1] is the represented as the 

lower of the 3 red vectors and is mapped to a 

point in rank order region 3421. The green arc 

represents the linear combinations of the first 

and second vectors of [X1] as determined by [T] 

through the range of desired correlation values 

from -1 to 1. The desired correlation remains -

.2225. 

The figure 12 provides a closer view of the area of 

interest. 

• The correlation between the starting vectors 

of [X1] is -0.326; yielding a absolute 

correlation error of 0.103. 

• The far right yellow marker represents second 

vector of [X’1] whose correlation with the first 

vector is exactly -0.2225. 

• The second vector of [X’1] lies in a different 

rank order region (1432). Thus the second 

vector of [X] is reordered to have the same 

rank order. This solution is depicted by the 

upper three red vectors, [X2]. The correlation 

of the vectors of [X2] is -0.175; yielding an 

improved absolute resultant correlation error 

of 0.048 

• Once again, [X2] is used to calculate [X’2] 

where the correlation between the first vector 

of [X] and [X’2] is exactly -.2225. In this case, 

the second vector of [X’2] has a rank order of 

2431; different than that of the second vector 

of [X2]. 

• Thus, the second vector of [X] is reordered to 

that of the second vector of [X’2]. This is 

depicted as [X3]. The resultant correlation 

with this iteration is -.2663; yielding an 

absolute resultant correlation error of 0.0438; 

lower than the previous iteration error. 

Figure 11 

Figure 12 
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• Another iteration 

yields [X’3]; whose 

second vector’s rank 

order remains 

unchanged. 

• Hence the final 

solution after 

iteration, [X3], 

represents the 

optimal solution for 

linear correlation. 

Importantly, this is 

predicated on the 

starting vectors of 

[X1] where possible 

solutions are 

confined to this 

subspace. However 

with iteration, 

regions beyond the 

initial [X] subspace 

may be encountered 

as was the case in this 

highly simplified, but 

wholly 

representative 

instance. 

 

Correlation with N = 

10, 30, 100 and 1000 

and Iterating 

Similar to before, 

resultant correlation and resultant correlation 

error was evaluated for desired correlation 

values ranging from -1 to 1 in increments 

of .00125. This now includes results of the 

iteration process described above for the same 

four cases of N=10, 30, 100, 1000. Each case used 

the same starting [X] to equitably compare the 

single iteration IC method to the iterative 

process. The following shows the resultant 

correlation error and number of iterations to 

convergence for N = 100. The results from the 

other cases are available as supplemental 

material for this paper. The chart legend indicates 

“Single” for applying the IC method once, or 

“Iterated” which indicates iteration until 

convergence. 

It was found that for all cases where more than 

one iteration was performed to achieve 

convergence of the reordered vector, an 

improvement in linear correlation error resulted. 

There are, however, ranges of desired correlation 

where rank correlation error (absolute value 

implied) worsened (e.g. -.1, .75). The following 

table shows global error, as previously defined, 

for all cases and the change in global error from 

the single IC method to the iterative process 

discussed here. 

Figure 14: Results for N = 100, Number of Iterations 

Figure 13: Results for N = 100, Correlation Error Combined 
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The Iteration Method with Skewed 

Distributions 

To stress test the iterative process, three highly 

skewed input vectors were used as the second 

vector of [X] for N = 10, 30 and 100. These 

distributions have a population skewness of 2.62, 

3.14 and 8.36; respectively. As before, the first 

input vector values were derived from the normal 

distribution. The following graph is a plot of 

values of the rank ordered second versus the first 

vector of [X]. Linear correlation of the rank 

ordered vectors is shown in the legend; 

quantifying the dissimilarity of the distributions. 

  

Table 2 

Table 3 

Figure 15 Figure 16: Results for N = 30, Linear Correlation  

Figure 17: Results for N = 30, Rank Correlation Figure 18: Results for N = 30, Number of Iterations 
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Results are shown for N = 30. The results from 

the other cases are available as supplemental 

online material for this paper. 

Observations: 

• In all instances, resultant correlation error 

(absolute value implied) for linear correlation 

was reduced with more than one iteration 

until convergence. 

• With very few exceptions, resultant 

correlation error for rank correlation 

increased with more than one iteration until 

convergence. 

• There is significant error with linear 

correlation toward the ends of the desired 

correlation range because of the dissimilarity 

between the distributions of the vectors of [X]. 

Higher Dimensional [X] Subspace: Input matrices 

with 2 variables have been used for illustrating 

improved linear correlation results of the IC 

method with iteration. The following considers 

an input matrix with 16 vectors (i.e. M = 16) for 

cases of N = 30 and 100. Once again, values are 

derived from a normal distribution as van der 

Waerden scores. By virtue of the transform 

matrix [T] being of upper triangular form, the 

vectors of [X’] are linear combinations of the 

corresponding vector of [X] and those to the left. 

(e.g. the 11th vector of [X’] is 

a linear combination of the 

first 11 vectors of [X].) The 

[X] subspace has expanded 

to a higher order subspace 

for input vectors further to 

the right in the [X]; 

potentially enabling reduced 

resultant correlation error. 

The following steps were 

taken to assess the effect of 

the higher dimensional [X] 

subspace. 

• The desired correlation 

matrix, [S], has all values 

in the first column and 

first row the same. That 

is, all vectors will be seeking the same 

correlation value with the first vector in order 

to assess any effect of the higher dimensional 

[X] subspace. The remaining values of the 

desired correlation matrix were chosen to 

ensure positive definiteness. 

• Linear correlation error was evaluated with 

single iteration and with iteration to 

convergence for desired correlation values 

ranging from -1 to 1 by .00125. From these 

results, global error was evaluated for each 

vector. 

• In order to ensure linear independence of the 

vectors of [X], the 2nd through 16th vectors of 

[X] were randomly permuted for each desired 

correlation value. 

• Evaluating linear correlation results of the 

first vector with all others for desired 

correlation values ranging from -1 to 1 was 

performed 30 times to attain data with a 

degree of statistical significance. 

• The average and sample standard deviation of 

the global error from each of the 30 runs, and 

for each of the 2nd through 16th vectors was 

evaluated. 

The following graphs show the global error 

results for the 16 vector input matrix [X] with 

N=30 and N = 100. Also plotted are plus and 

Figure 19 
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minus one sample standard deviation from the 

sample mean for the single iteration global error 

results and for the iteration to convergence 

global error results based on the 30 runs for 

desired correlation from -1 to 1 by .00125. 

Observations: 

• As shown previously in the case of M=2, linear 

correlation global error is reduced with 

iteration to convergence. 

• For both cases of iteration to convergence for 

N=30 and N=100, the global error of the 16th 

vector is approximately one third of that of the 

2nd vector. This suggests that iterating within a 

higher order subspace of N dimensions 

enables reduced global error. In other words, 

vectors more to the right in [X] are more likely 

to have less resultant correlation error than 

preceding vectors with the iteration method. 

• It was observed that while the root mean 

square of all linear correlation errors reduced 

with each iteration, some individual 

correlation errors (i.e. correlation of vector i 

with vector j; j ≠ i) increased during the 

iteration process. 

 

Summary 

The IC method of developing a multivariate input 

variable with prescribed correlation is first 

described and demonstrated. The IC method is 

then applied for the case of two input variables 

where the correlation between the two input 

vectors is prescribed in [S] and the resultant 

linear and rank correlation of the reordered 

vectors is calculated. IC method results are 

evaluated for desired (prescribed) correlation 

values between -1 and 1 by increments 1/800th. 

This assessment is performed for input vectors 

with the number of values (N) ranging from 5 to 

1000. A global error is defined as the root mean 

square of the difference between the desired 

correlation and that calculated from the IC 

method for all 801 instances of desired 

correlation between -1 and 1.  

There are N factorial possible permutations of an 

input vector which span N dimensional space. 

With all permutations viewed as a constellation 

of discreet points in N dimensional space, each of 

these points has a correlation value (linear and 

rank) with the other input vectors. The IC method 

constrains possible outcomes to those near the 

Figure 20 
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subspace in N dimensional space subtended by 

the linear combination of the vectors of [X]. It is 

possible that there are values in the constellation 

of possible resultant correlations that are closer 

to the desired correlation. 

An iterative process is presented where the 

resultant re-ordered vectors of [X] are used as 

the starting point to once again apply the IC 

method. This is repeated until convergence of the 

resultant correlation is achieved. Using the global 

error previously described as a comprehensive 

metric, the iterative method shows marked 

reductions in linear correlation error (i.e. 

absolute value of the difference between 

prescribed and resultant correlation) from that of 

the single step IC method. For highly skewed and 

dissimilar distributions of input variates in [X], it 

is shown that rank correlation error often 

worsens with iteration while linear correlation 

error improves. 

The single iteration Iman Conover method is a 

powerful technique that is likely more than 

adequate given the confidence limits of 

prescribed correlation values. As such the 

practitioner should consider the value of 

improving the correlation accuracy of the input 

variables by iteration.  

Having a practical understanding of the methods 

by which correlated multivariate input variables 

are developed is useful when the software 

platform does not provide what is needed. The 

ability to perform this manually, to understand 

the nature of its limitations and to experiment 

with various distribution types may be useful and 

is certainly instructive for the practitioner. There 

may be special circumstances where increased 

accuracy of the correlation of a set of input 

variables is needed. The author notes that the 

improvement in accuracy with the application of 

the iterative IC method described herein should 

be considered in the context of the confidence 

limits of the desired correlation coefficient value 

derived from sampled data where the Fisher r to 

z transformation has applicability. 
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