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Introduction 

Background 

A dummy variable is used to capture a 

characteristic that is not directly quantifiable, but 

exerts an important influence on the behavior of 

the dependent variable. For example, the cost of 

high-power amplifiers may vary because some 

are airborne while others are ground based. For 

another example, data may be collected by 

different analysts, or arise from different 

factories. In such a case, a continuous scale 

cannot be assigned to the qualitative variable 

“analyst” or “factory.” In other words, within a 

class of items there may be an attribute that 

explains the separate effects on the response. 

These effects can be captured in a regression 

model by the use of a dummy variable. The 

dummy variable is simply another variable in the 

regression except that it can only take on discrete 

values. In the case of amplifiers that are either 

airborne or ground based, the values of the 

dummy variable would only take on one of two 

values: a zero for airborne amplifiers and a one 

for ground-based amplifiers or vice versa. 

 

Purpose 

The objectives of this paper are threefold. 1) 

Explain the purpose of using dummy variables 

and their properties in a regression equation. 2) 

Identify several common mistakes when using 

dummy variables in an equation. 3) Describe the 

Chow test and dummy variable t-test, which are 

used to validate the application of dummy 

variables. Some general cautionary notes are also 

recommended. These objectives are illustrated in 

several examples.  

Before specifying dummy variables in a 

regression equation, a brief review of additive 

and multiplicative error models is provided. 

 

Additive Error Model 

An additive error model can be stated as follows: 

(1) 

where: 

yi = the observed dependent variable of the 

ith data point, i = 1 to n 
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f (xi, β)  = fi   = the value of the hypothesized 

equation at the ith data vector 

    xi = the ith data vector of the independent 

variables 

    β = the vector of unknown parameters to 

be estimated by the regression equation 

    ℰi = the error term with a mean of 0 and a 

variance σ2 (assumed to be independent 

of the explanatory variables)  

    n = the sample size 

 

Multiplicative Error Model 

A multiplicative error term is preferred in the 

cost analysis field because the error of an 

individual cost observation is generally 

proportional to the magnitude of the hypothetical 

function. A multiplicative error model can be 

specified as follows: 

  

  (2) 

 

The definitions of yi, f (xi, β), etc. are the same as 

given in Equation 1. Unlike the additive error 

model (Equation 1), the standard deviation of the 

dependent variable (e.g., cost) in Equation 2 is 

proportional to the size of the hypothetical 

function rather than some fixed amount across 

the entire data range.  

There are three popular methods to fit 

multiplicative error models: Log-Error, Minimum

-Unbiased-Percentage-Error (MUPE) and 

Minimum-Percentage Error Regression under 

Zero-Percentage Bias (ZMPE) methods. Both 

MUPE and ZMPE methods model the CER where 

the multiplicative error term e is assumed to have 

a mean of one and a variance s2. The MUPE 

method is an Iteratively Reweighted Least 

Squares (IRLS) regression technique (Hu, 2001; 

Seber & Wild, 1989; Weisberg 1985; Wedderburn 

1974). For a detailed explanation of the ZMPE 

method, see Book and Lao (1999). 

Log-Error Model. If the multiplicative error term 

(i) in Equation 2 is assumed to follow a log-

normal distribution with a mean of zero and a 

variance of 2 in log space, then the error can be 

measured by the following: 

      (3) 

 

where ln is the natural logarithm function. In this 

situation, the objective is to minimize the sum of 

squared ℰis (i.e., ((ln(ei))2). If the transformed 

function is linear in log space, then ordinary least 

squares (OLS) can be applied in log space to 

derive a solution for β. In this situation, the CER is 

termed a log space OLS equation (LOLS) or a log-

linear CER. If not, a non-linear regression 

technique should be applied to derive a solution.  

 

Model Form with a Single Dummy Variable 

Linear Model 

Consider a linear model using one ordinary 

independent variable X and one dummy variable 

D:  

  

          (4) 

 

where: 

D = 1 if observation ni is from category #1 

D = 0 if observation ni is from category #2 

α, β, δ, θ = coefficients to be estimated by the 

regression equation 

Equation 4 is equivalent to fitting two separate 

linear equations to the two categories. This 

specification allows regression of both categories 

simultaneously. The estimated coefficients 

derived by this regression model (Equation 4) 

will be precisely the same as when the two 

equations are fitted separately. If all the 

coefficients in Equation 4 are significant at a 

certain significance level (say 5%), then this 

implies that the two populations (with and 
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without the attribute D) behave totally different 

and they should be estimated by two separate 

regression equations. 

If a regression analysis indicates the coefficient θ 

is insignificant, then a reduced model can be 

considered: 

          (5) 

 

Equation 5 is the usual form when applying a 

dummy variable. It indicates that these two 

populations exhibit only a difference in the 

response level, but share the same sensitivity 

(rate of change) for the independent variable X. 

If coefficient δ is insignificant in Equation 4, a 

reduced model is given by: 

  (6) 

 

Equation 6 indicates that two populations have 

different sensitivity reactions to the relative 

change in the independent variable X, but share 

the same fixed cost, which would not be of great 

interest to us. In other words, if θ is significantly 

different from zero in Equation 4, then the two 

populations are statistically different and should 

be analyzed separately. 

 

Log-Linear Model 

The respective log-linear equation form using one 

ordinary independent variable X and one dummy 

variable D is given by: 

  

            (7) 

 

Similarly, if a regression analysis indicates the 

coefficient θ is insignificant, then a reduced 

model can be considered: 

                  (8) 

 

Similar to Equation 5, Equation 8 is the usual 

form of applying a dummy variable for log-linear 

models. It indicates that these two populations 

exhibit a difference in response levels only. They 

share the same sensitivity in the exponent for the 

independent variable X.  

However, if the coefficient λ is found to be 

insignificant in Equation 7 (i.e., δ is not 

significantly different from one), a reduced model 

is then given by: 

              (9) 

 

Equation 9 indicates that the two populations 

have a different sensitivity reaction towards the 

relative change in the independent variable X, but 

share the same cost at unit one. Just like Equation 

6, Equation 9 is also not of great interest to us. 

Similar to Equation 4, if θ is significantly different 

from zero in Equation 9, then the two populations 

are statistically different and should be analyzed 

separately. 

 

Model Form with Multiple Dummy Variables 

The method of Equation 4, as well as Equation 7, 

can be extended to include more than one 

dummy variable in the equations. First, ensure 

the dummy variables are not linearly related 

among themselves; otherwise, it will result in a 

singular design matrix. Handle m different 

responses levels by introducing (m-1) dummy 

variables. Create the basic allocation pattern for 

m dummy variables by writing down an (m-1) x 

(m-1) identity matrix, Im-1, and then adding a row 

of (m-1) zeros as a comparison baseline: 

 

 

 

 

See Draper and Smith (1981) for details. 

Note that the dummy variable’s representation is 

not unique. There are different ways of choosing 

dummy variables for a given regression situation.  

(10) 
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(11) 

One common mistake when specifying m 

different levels is specifying the relative distance 

between the levels using a discrete variable, e.g., 

D = 1, 2, …, m, rather than letting the regression 

equation estimate the separations. The following 

example demonstrates this common error. 

Consider three stratification dummy variables to 

identify different guidance mechanisms in missile 

programs: 

 
Listed below is a basic representation using the 

above-defined dummy variables: 

 

However, the following representation is not the 

same as the representation given above: 

 

 

 

 

Equation 12, which is a common practice for 

applying dummy variables, does not let the 

regression equation freely estimate the true level 

of the response from the category D3 = 1 (both 

active radar and MC guidance). It simply assumes 

the level of D3 is the product of the levels of D1 

and D2. It is difficult to evaluate the validity of 

using dummy variables in Equation 12 and the fit 

statistics could be misleadingly significant. See 

McDowell (2012) for illustrative examples of 

using two dummy variables. 

 

In summary, the representation of dummy 

variables should: 

• account for different levels of responses 

• use the regression equation (rather than an 
assumption) to derive the different levels of 
response (compare Equation 11 with  
Equation 12) 

• make sure the design matrix is not singular 

 

Chow Test and Dummy Variable t-Test 

Although most analysts are familiar with the F-

test, the Chow test is not as well-known. The 

Chow test is used for testing the significance of 

the overall model that includes dummy variables. 

The F-test and the related F-Statistic are 

introduced before explaining the Chow test. 

 

F Test for the Overall Model  

Consider a linear model with an intercept where 

the dependent variable Y can be estimated by k 

independent variables; namely, X1, X2, ..., Xk: 

 
 

for i = 1, 2, …, n 

This model can be written using matrix notation: 

                 (13) 

where: 

Y is the n by 1 vector of observations (i.e., the 

dependent variable), 

X is the n by (k+1) design matrix, which consists 

of the independent variables, 

β is the (k+1) by 1 vector of unknown 

coefficients, i.e., β = (β0, β0, …, βk)t 

ℰ is the n-by-1 vector of error terms with a 

variance matrix, Var(ℰ) = V[σ2],  

V is an n-by-n diagonal matrix with the non-

negative value vi in the diagonals (for i = 1, …, n) 

and zeros elsewhere,  

(12) 
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[σ2] is used to denote a diagonal matrix where its 

diagonal element is σ2, and 

n is the sample size. 

Note that the matrix V is assumed to be an 

identity matrix I for OLS. The discussion in this 

paper can be applied to weighted least squares 

(WLS). OLS is used to demonstrate the use of 

dummy variables. 

The F-Statistic (F-Stat) is used in a hypothesis 

test to determine whether the overall regression 

model is significant. It is defined as the ratio of 

the regression sum of squares to the error sum of 

squares adjusted by their own degrees of 

freedom (DF) in the fit space: 

   

         (14) 

 

where SSR is the sum of squares due to 

regression, SSE is the error sum of squares, and k 

is the total number of independent variables, not 

including the intercept. MSR is the mean squares 

due to regression, while MSE is the mean squares 

due to error. 

To check the significance of the overall model, the 

null hypothesis (Ho) is tested against the 

alternative hypothesis (Ha): 

         vs.  

for at least one slope parameter 

Using the vector notations, it is given by: 

Ho: β = 0    vs.   Ha: β ≠ 0  

where not including the 

intercept. 

If Ho is true, the two statistics SSR and SSE are 

independent and the F-Stat follows an F 

distribution with k and n-k-1 DF, respectively, i.e., 

F-Stat ~ F(k, n-k-1). Intuitively, if the model is 

adequate (i.e., Ho can be rejected), then SSE will 

be small and F-Stat will be large. Therefore, if the 

F-Stat is greater than or equal to Fα(k, n-k-1), it is 

concluded that there is a significant relationship 

between the dependent variable and independent 

variables at a (100α)% significance level. Note 

that Fα(k, n-k-1) denotes the upper (100α)% cut-

off point of an F distribution with k and n-k-1 DF, 

respectively. For a no-intercept model, compare 

the F-Stat with Fα(k, n-k) instead of Fα(k, n-k-1). 

The decision rules are summarized below. 

Reject Ho: 

Model with Intercept: if F-Stat ≥ Fα(k, n-k-1) 

Model wo Intercept: if F-Stat ≥ Fα (k, n-k) 

Alternatively, the p-value for the F-Stat can be 

used to test the null hypothesis Ho versus Hα: 

Reject Ho: 

if p-value for the F-Stat ≤ α (the significance level 

of the test) 

 

Chow Test (F Test) for the Overall Model 

Given a simple linear model Y = Xβ + ℰ (see 

Equation 13), if there are two groups, (A) and (B), 

in which the parameters are not necessarily the 

same, the linear model can be rewritten as 

follows: 

Now test the null hypothesis (Ho) against the 

alternative hypothesis (Ha):  

Ho: θ = γ  vs.  Ha: θ ≠ γ 

If the null hypothesis Ho is false, then analyze two 

regression equations separately as given in 

Equation 15. Their error sums of squares are 

denoted by SSE1 and SSE2 for Group (A) and 

Group (B), respectively. The “unrestricted” sum 

of squares due to error (USSE) for Equation 15 is 

then given by: 

                (16) 

 

Let p denotes the total number of estimated 

parameters (coefficients) in the equation. If there 

(15) 
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are n1 observations in Group (A) and n2 

observations in Group (B), then the total number 

of observations is n = n1 + n2 and USSE has (n1 – 

p) + (n2 – p) = (n –2p) DF.  

But if the null hypothesis Ho is true, use a single 

equation (i.e., Equation 13) to model all the data 

points. In this case, the SSE for Equation 13 is 

termed the “restricted” sum of squares due to 

error (RSSE), which has (n – p) DF. Intuitively, if 

the null hypothesis is true, there should not be 

any significant difference between USSE and 

RSSE. Consequently, an F statistic for the Chow 

test is formulated below: 

  

if Ho is true.  

 

           (17) 

The decision rule is as follows:  

if FChowTest < Fα (p, n – 2p), then there is no sample 
evidence to reject the null hypothesis. On the 
other hand, if FChowTest ≥ Fα (p, n – 2p), then it is 
concluded that Groups (A) and (B) respond 
differently to the relative change in the 
independent variable X at a (100α)% significance 
level. Note that p = k + 1 if there is an intercept in 
the model; otherwise, p = k, where k stands for 
the number of independent variables. 

 

Dummy Variable t-Test, Individual Parameters 

A dummy variable t-test is used for testing the 

significance of individual parameters. Here is an 

alternative approach to test the following model: 

                 (18) 

 

where the dummy variable D is given by: 

 

 

 

The hypothesis Ho: θ = γ for Equation 15 is the 

same as the hypothesis Ho: δ = 0 for Equation 18. 

Since both tests lead to the same conclusion, use 

either Equation 15 or Equation 18 to test the 

validity of pooling data from various categories to 

analyze them together. However, the Chow test 

(an F-test) is used for testing the significance of 

the overall model. If the Chow test result is 

significant, it does not indicate which parameters 

between the two groups are significantly 

different. The dummy variable t-test can further 

examine which specific parameters in both 

groups are statistically different. As a result, the 

dummy variable t-test (e.g., Equation 18) 

provides more detailed information than the 

Chow test. 

If there are m different groups in the data set, use 

the F-stat given by Equation 17 to test the null 

hypothesis with the following: 

 

 

 

DF for USSE = n – m(k+1) 

DF for RSSE = n – (k+1) 

where ni is the sample size and SSEi is the error 

sum of squares for each group, respectively  

(i = 1, …, m). Based upon Equations 17 and 19, an 

F test statistic for the Chow test is derived 

accordingly. 

The alternative approach (t-test) can also be 

applied to test m different groups in a given data 

set by including (m – 1) dummy variables. The 

process is a generalization of Equation 18. See the  

example section below for using dummy variable 

t-test in a CER. 

 

General Cautions and Statistical Tests When 

Using Dummy Variables 

Some general guidelines and cautionary notes to 

consider before adding dummy variables to an 

equation are provided in this section. 

 

Analyze individual groups first.  

Examine whether different categories (or groups) 

should be analyzed by separate regression 

equations before pooling them together using 

(19) 
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dummy variables. Specifically, analyze separate 

regression equations (by Equation 4 or 7) before 

choosing a parallel relationship (e.g., Equation 5). 

 

At least three data points for each category  

If there are only one or two data points left in a 

particular category (indicated by a dummy 

variable, D), the t-statistic associated with the 

dummy variable D tends to be artificially large 

and hence misleading. The general rule is to have 

at least three data points in a particular category 

before using a dummy variable.  

 

Do not use many dummy variables to answer 

yes/no questions 

If there are five categories in the data set, an 

analyst can create four (4 = 5 – 1) dummy 

variables to capture the five categories (see 

Equation 10). However, if a CER contains four 

dummy variables to answer yes/no questions 

about the data points, there are actually 16 

possible combinations of the four yes/no answers 

(24 = 16). In other words, it creates 16 different 

categories in the CER. The number of categories 

can grow rapidly as the number of yes/no 

questions grows. For example, five dummy 

variables create 32 (=25) categories in a CER; six 

dummy variables create 64 (=26) categories, etc. 

Analysts should make sure that they have enough 

observations for the respective regression 

analysis. 

 

Do not single out specific program.  

Dummy variables should not be abused. There 

can be a temptation to use several dummy 

variables to account for various aspects of a class 

of systems to the point where there are no (or 

few) degrees of freedom left in the overall 

regression equation. If a dummy variable is used 

to capture a single data point in a different level, 

the regression result is the same as when that point 

is left out. Hence, a category of one point is the 

same as eliminating the point. The general rule is 

to do data plotting and data analyses before using 

dummy variables.  

 

Examine if all groups have the same variance  

The last caution is to ensure that data associated 

with a particular attribute act no differently from 

those without it. In other words, the noise term 

associated with the dependent variable (i.e., cost) 

should be the same for all items with or without 

the attributes. F and χ2 tests can be used for 

testing the equality of the variances of different 

categories. 

If there is only one dummy variable hypothesized 

in the model, then a simple F-test comparing the 

mean squared errors (MSE) of these two separate 

regression lines will be adequate 

Test Ho: σ1 = σ2 vs. Ha: σ1 ≠ σ2 

Test Stat:  
 

Decision Rule:  

Reject Ho if                (20) 

where Fα(df1, df2) indicates the upper (100α)% 

cut-off point of an F distribution with DF df1 and 

df2, respectively, while df1 and df2 are the DF 

associated with the corresponding MSE. 

If several dummy variables are used in a 

regression model, a joint hypothesis of the 

equality of several variances should be considered 

in addition to the simple F-test (Mood et al., 

1974). Dummy variable analysis will be valid 

when these tests are insignificant. 

 

Demonstration of Dummy Variables in a 

Spline 

In mathematics, a spline is a numeric function 

that is piecewise-defined by functions such as 

polynomials (see Wikipedia). In many practical 

situations, dummy variables can be used to 

account for two distinct trends occurring in the 

response data, i.e., segmented lines and splines. 
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The application of splines 

can be classified into two 

categories: (1) it is known 

which data points lie on 

which trends and (2) it is 

not known. This paper only 

addresses category (1). 

 

It is known which data 

points lie on which trends  

If data points (x1, y1), (x2, 

y2), ..., and (xm, ym) are in 

one straight line, while data 

points (xm+1, ym+1), ..., and (xn, yn) are in another, 

discuss two subcases: (1a) the intersection of 

these two lines is a given number between xm and 

xm+1, say xo, and (1b) the intersection of the two 

lines is not known and the regression is used to 

estimate the intersection. 

(1a) The intersection of the two lines is at x0 

(x m < x0 < xm +1). In this case, set up two dummy 

variables Z1 and Z2 to take account of the 

specifications (see Table 1). 

Consider the following equation: 

           (21) 

 

The regressed estimates should have the 

following properties: 

 = intercept of line 1 

  = slope of line 1 

  = slope of line 2 

(1b) The intersection of the two lines is 

somewhere between xm and xm +1. In this case, a 

third dummy variable D (in addition to Z1 and Z2) 

is created to take care of the unknown point of 

intersection (see Table 2). 

Given a regression line as follows: 

                (22) 

The estimated parameters will have the following 

interpretations: 

 = intercept of line 1 (same as above) 

 = slope of line 1 (same as above) 

 = slope of line 2 (same as above) 

 = the vertical distance between line 1 

and line 2 at the (m+1)th observation 

Table 1: Dummy Variables Z1 and Z2 for Spline (Case 1a) 

Graph 1: Intersection of two lines is at x0 where xm < x0 < xm+1 (Case 1a) 
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The point of intersection can be found by writing 

both lines in terms of the Z1 scale. The first fitted 

line is given by: 

          (23) 

The second fitted line is given by: 

     (24) 

Since Z2 = 0 when Z1 = xm+1,  

substitute Z2 = Z1 – xm+1 into Equation (24): 

          (25) 

The intersection of the x-axis is then derived 

using both Equations 23 and 25: 

                 (26) 

 

For more information about splines, see Ahlberg 

et al. (1967); Bacon & Watts (1971); Beckman & 

Cook (1979); Bellman & Roth (1969); Ertel & 

Fowlkes (1976); Greville (1969). 

 

Example Section 

Two sample data sets are used in this section. 

Several examples are derived using these two 

data sets to demonstrate some common errors 

when applying dummy variables in CER 

development. For illustration purposes, all CERs 

are generated by the LOLS method so the test 

results can be easily verified in Excel. 

 

Rocket Propulsion CER 

The database is given in Appendix A. Below is a 

log-linear CER to predict the cumulative average 

cost for a solid rocket motor: 

           (27) 

where: 

CAC(Q) = cumulative average unit cost of Q units, 

FY17$K, no fee 

NWlbs = weight of nozzles and thrust vector 

control hardware 

NNZ = number of nozzles 

D1, D2 = stratification dummy variables for 

motor case material, where 

Note that Equation 27 is fit in log space. Equation 

27 can be interpreted as a cost improvement 

curve (CIC) under the disjoint theory. It can also 

be viewed as a rate curve using the production 

quantity as the surrogate for rate. The cost 

improvement (CI) slope (or the rate slope) for 

Equation 27 is 87.6% (i.e., 2-0.19), which is very 

significant (see the regression output below for 

details).  

Since there are three levels of the motor case 

material, two dummy variables (D1 and D2) are 

adequate to account for the different levels of 

Table 2: Dummy Variables Z1, Z2 and D for Spline (Case 1b) 
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response. As shown by Equation 27, a solid 

rocket motor made of glass at a given 

specification (quantity, nozzle weight, number of 

nozzles) costs 26% more than a rocket motor 

made of steel at the same specification. Similarly, 

a rocket motor made of Kevlar on the average 

costs 109% more than a rocket motor made of 

steel. Analysts should verify whether these 

factors are reasonable by engineer’s logic. If the 

regressed coefficients are nonsensical, the fitted 

equation cannot be accepted regardless of the 

statistical measures. 

 

Regression Output. Detailed regression outputs 

for the fit measures, along with the summary 

predictive measures, are given in Table 3. 

Based upon the fit measures, all the regressed 

coefficients are significant at the 5% significance 

level (all the p-values are less than 0.05). This 

equation does not have the problem of 

multicollinearity; no outliers are identified in the 

report. This CER appears to be a very solid 

equation.  

 

 

However, there is a downside of using dummy 

variables in this CER. If the data points are 

analyzed separately by their individual material 

types, the motors made of steel have very little 

cost improvement (CI) with quantity. Their CI 

slope is 97% (3% decrease in cost each time the  

quantity doubles). The motors made of glass have 

a moderate CI, with a slope of 93%. Most of the CI 

is, in fact, coming from the five motors made of 

Kevlar and their CI slope is at 61%. This finding 

demands further investigation (61% slope is 

rather unusual). Note: this example is simply 

used to point out the danger of combining 

different categories by using dummy variables 

without first analyzing their separate regression 

equations. 

 

Receiver CER 

This hypothetical CER is 

derived from a suite-level 

Unmanned Space Vehicle 

Cost Model, Ninth Edition 

(USCM9) database (Nguyen 

et al., 2010), but sanitized 

to retain the desired 

behaviors while protecting 

the source of the data. (See 

Appendix B for the “fake” 

data set.) 

 

 

 

 
Table 3: Fit Measures for Equation 27 

Table 4: Summary of Predictive Measures for Equation 27 
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Listed below is a suite-level recurring CER for 

receivers using two dummy variables: 

             (28) 

where: 

T1 = first unit cost 

X = receiver suite weight in pounds 

EHF = a dummy variable to indicate if the 

receiver is operating at Ka-band (EHF) or 

higher 

Gov = 1 for government programs, 0 for 

commercial programs  

At first glance, this CER appears to be a solid 

equation since it is derived by 51 data points with 

a standard error (SE) in log space of 33%. All the 

regressed coefficients are significant and the 

factors for the two dummy variables are also 

reasonable. Additionally, its Adjusted R2 is 84% 

(evaluated in log space), while the Pearson’s 

correlation coefficient between the actual and the 

predicted value is 0.87 (evaluated in unit space).  

As shown by Appendix B, however, there are four 

categories in this data set: Gov = 1, EHF = 1; Gov = 

1, EHF = 0; Gov = 0, EHF = 1; Gov = 0, EHF = 0. Be 

sure to use three (not two) dummy variables to 

identify these four categories. Furthermore, four 

different CERs are given below when analyzing 

them by their individual categories: 

Gov = 1, EHF = 1: 

T1 = 608.93X0.660 

(n = 9; SE = 0.28; R2Adj =0.89)        (29) 

Gov = 0, EHF = 1: 

T1 = 245.3X0.678    

(n =11; SE =0.15; R2Adj =0.84)        (30) 

Gov = 1, EHF = 0: 

T1 = 69.43X0.938  

(n =13; SE =0.33; R2Adj =0.90)        (31) 

Gov = 0, EHF = 0: 

T1 = 35.77X0.944 

(n =18; SE =0.32; R2Adj =0.55)        (32) 

According to the above equations, there seem to 

be two different levels of the weight exponent for 

these four categories: one is at 0.67, versus the 

other at around 0.94. (The weight exponent 0.83 

in Equation 28 behaves like an average of these 

weight exponents.) In fact, the dummy variable t-

test shows these two weight exponents to be 

significantly different. Consequently, this data set 

should be grouped by the EHF dummy variable: 

one group for EHF = 0; the other for EHF = 1. In 

each group, the Gov dummy variable is significant 

and the CER meets the requirement of using a 

dummy variable by the t-test. 

EHF = 1: 

T1 = 271.2X0.6634 2.206Gov 

(n = 20; SE = 0.21; R2Adj = 0.88)        (33) 

EHF = 0: 

T1 = 36.98 X0.9389 1.869Gov 

(n = 31; SE = 0.32; R2Adj = 0.88)        (34) 

 

Chow test and Dummy Variable t-test. This 

receiver data set is used to demonstrate how to 

use the Chow test and dummy variable t-test. 

Listed below are the USSE numbers and sample 

sizes for the two unrestricted CERs, Equations 29 

and 30: 

Gov = 1, EHF = 1 (Equation 29): 

USSE1 = 0.5395; n1 = 9         (35) 

Gov = 0, EHF = 1 (Equation 30):  

USSE2 = 0.1953; n2 = 11         (36) 

If Equations 29 and 30 are combined into a 

restricted model, Equation 37 is derived: 

EHF = 1: 

T1 = 1642.54X0.4275 

(RSSE = 2.5145, R2Adj = 0.61)        (37) 

Equation 38 is derived when using the Gov 

dummy variable to combine Equations 29 and 30 

into one CER: 

EHF = 1: 

T1 = 271.16X0.663 2.206Gov 

(RSSE = 0.7355, R2Adj = 0.88)         (38) 
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The test statistic for the Chow test is then given 

by: 

 

Since the test statistic FChowTest is greater than  

F0.01 (2, 16) = 6.23 , it is concluded that there is a 

significant difference between the government 

and commercial programs at the 1% level. 

However, the Chow test (an F-test) does not 

indicate which parameters (slope, scale, or both) 

are significantly different between these two 

groups.  

On the other hand, the dummy variable t-test can 

be used to further examine whether some specific 

parameters (coefficients) in both groups are 

statistically different. Given below is a full model 

using the dummy variable on both the scale and 

exponent coefficients: 

EHF = 1: 

T1 = 245.3X0.678X)-0.018Gov 2.482Gov       (40) 

Based upon the dummy variable t-test, the 

exponent -0.018 (which captures the weight 

difference between the government and 

commercial programs) is not significant because 

its t-ratio is only -0.12.  

Since no significant difference is found between 

the weight exponents of these two groups, use 

the Gov dummy variable to combine Equations 29 

and 30 into one equation (i.e., Equation 38). Note 

that the Coefficient 2.206 in Equation 38 is 

significant. 

Similarly, for the government programs (Gov = 1), 

it can be shown that both the exponent and scale 

parameters associated with the EHF variable are 

significant using the dummy variable t-test (as 

their p-values are less than 0.05): 

Gov = 1: 

T1 = 69.43X0.938 X-0.278EHF 8.77EHF       (41) 

 

Consequently, the two groups, EHF = 1 and EHF = 

0, should be analyzed separately; namely, they 

should not be pooled together using a dummy 

variable. 

 

Conclusions 

Analysts should consider general guidelines 

before adding dummy variables to an equation. 

The main purpose of using dummy variables is to 

conserve DF for small sample analysis. However, 

the full model hypothesis should be tested before 

using the reduced model. Besides checking the fit 

measures of the regressed coefficients, analysts 

should run appropriate tests first to determine 

the relevance of applying dummy variables to 

their equations. Listed below are a few basic rules 

for using dummy variables in CER development:  

1. Analyze individual groups first. Examine 

whether different groups (or categories) should 

be analyzed by separate regression equations 

before pooling them together using dummy 

variables. To be more specific, analyze separate 

regression equations (e.g., Equations 4 and 7) 

before choosing a reduced model (e.g., Equations 

5 and 8). 

2. Use Chow test and dummy variable t-test to 

determine whether a reduced model is 

appropriate. 

3. Use (m-1) dummy variables to specify m 

different groups. In addition, do not specify the 

relative distance between the group levels using a 

discrete variable, e.g., D = 1, 2,…, m. Instead, let 

the regression equation estimate the separations. 

4. Use the rule of three points. If there are only 

one or two data points left in a particular 

category (indicated by a dummy variable, D), the t

-statistic on the slope or exponent coefficient of 

the dummy variable D tends to be artificially 

large and hence misleading. The general rule is to 

have at least three data points in a particular 

category before using a dummy variable.  

(39) 
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Appendix A: Solid Rocket Motor Data Set 

5. Do not single out a specific program. It can be 

tempting to use several dummy variables to 

account for various aspects of a class of systems 

to the point where there are no (or few) degrees 

of freedom left in the overall regression equation. 

If a dummy variable is used to capture a single 

data point at a different level, the regression 

result is the same as when that point is left out.  

6. Check whether all groups have the same 

variance to ensure that data associated with a 

particular attribute act no differently from those 

without it. In other words, the noise term 

associated with the dependent variable (i.e., cost) 

should be the same for all items with or without 

the attributes. F and χ2 tests can be used to check 

the equality of the noise band (i.e., variance) of 

the dependent variable (Mood et al., 1974). 

 

7. Select dummy variables by engineer’s logic. 

Dummy variables based upon sound logic and 

solid technical grounds are more likely to have 

merit. For example, the dummy variables chosen 

in USCM9, such as "communication mission" (yes 

or no), "agency type" (1 = government program, 0 

= commercial program), etc. are based upon 

engineer's logic, so they have practical meaning. 

Selecting dummy variables by engineer’s 

judgement is as important as the statistical 

considerations in CER development. 

Finally, dummy variables can be used to find the 

intersection between two lines (splines). This can 

be a useful application in cost improvement curve 

(CIC) analysis. For example, in a CIC data set, if 

the first few data points appear to follow one CIC 

slope, while the remainder follows another CIC 

slope, use dummy variables to model the two 

distinct trends.  

Data Point CAC$K  Quantity Nozzle Weight Number of Nozzles D1 D2 

Obs 1  1,411.7  2,249  948.0 4 0 0 

Obs 2  951.7  925  390.0 4 0 0 

Obs 3  1,025.4  1,324  350.0 4 0 1 

Obs 4  670.7  1,547  169.0 4 0 1 

Obs 5  520.0  698  227.0 1 0 1 

Obs 6  1,241.8  350  604.0 4 0 0 

Obs 7  1,077.5  350  309.0 4 0 1 

Obs 8  1,802.6  667  1,440.0 4 0 1 

Obs 9  901.9  667  172.0 4 0 1 

Obs 10  993.6  547  761.0 1 0 1 

Obs 11  957.4  547  424.0 1 0 1 

Obs 12  4,248.1  71  1,535.0 1 1 0 

Obs 13  5,084.4  103  1,485.0 2 1 0 

Obs 14  3,693.8  71  479.0 2 1 0 

Obs 15  635.6  85  176.0 1 0 1 

Obs 16  209.4  524  92.5 1 0 0 

Obs 17  286.2  546  114.0 1 0 0 

Obs 18  733.7  184  157.2 1 1 0 

Obs 19  603.0  184  151.0 1 1 0 

Obs 20  734.1  1500 520.0 2 0 0 

Obs 21 1,112.5 1230 750.0 3 0 0 

Obs 22 536.6 1680 256.0 2 0 0 



89 Journal of Cost Analysis and Parametrics: Volume 10, Issue 1. October 2021 

Using Dummy Variables in CER Development  Dr. Shu Ping Hu, Alfred Smith 

Appendix B: Receiver Data Set 

Observation T1 X (Weight) EHF Gov 

Obs 1         6,600.21             254.37  0 1 

Obs 2         1,424.00               28.26  0 1 

Obs 3      25,364.46             782.09  0 0 

Obs 4      28,902.57             685.42  0 0 

Obs 5      11,084.69             737.25  0 0 

Obs 6      17,456.22             628.53  0 0 

Obs 7      18,174.66             791.46  0 0 

Obs 8      24,701.53             358.18  0 1 

Obs 9         5,320.50             122.18  0 1 

Obs 10         7,826.23             204.68  0 1 

Obs 11         2,764.87               43.69  0 1 

Obs 12      45,021.55          1,184.43  0 0 

Obs 13      19,083.38             652.19  0 0 

Obs 14         8,172.09               39.39  1 1 

Obs 15      57,801.60             621.18  1 1 

Obs 16         1,957.13               29.80  0 1 

Obs 17      23,130.17             359.39  0 1 

Obs 18      18,262.27             345.47  0 1 

Obs 19      26,415.75             348.59  0 1 

Obs 20         7,993.50             120.96  0 1 

Obs 21      16,727.47             791.46  0 0 

Obs 22      63,784.22          2,410.84  0 0 

Obs 23         9,289.77             654.11  0 0 

Obs 24      25,737.49          1,162.01  0 0 

Obs 25      17,697.46          1,067.34  0 0 

Obs 26      15,631.43             934.49  0 0 

Obs 27         2,251.56               49.04  0 1 

Obs 28      20,497.51             637.93  0 1 

Obs 29      22,645.97             888.16  0 0 

Obs 30      25,812.86             920.00  0 0 

Obs 31      16,975.38             533.64  1 0 

Obs 32      36,001.45          1,676.22  1 0 

Obs 33      21,145.31             618.80  1 0 

Obs 34         7,677.11               38.36  1 1 

Obs 35      12,051.18             359.50  0 0 

Obs 36      15,607.81             737.75  0 0 

Obs 37      11,138.75             209.80  1 1 

Obs 38      38,767.66             548.44  1 1 

Obs 39      41,176.09             566.80  1 1 

Obs 40      11,228.76               93.08  1 1 

Obs 41      33,248.99          1,228.50  1 0 

Obs 42      28,903.69          1,035.00  0 0 

Obs 43      20,381.97             957.30  1 0 

Obs 44      50,546.40          2,539.59  1 0 

Obs 45      27,160.39             713.67  1 0 

Obs 46      13,891.36             522.49  1 0 

Obs 47      20,687.47             680.32  1 0 

Obs 48      18,438.14             173.89  1 1 

Obs 49      51,652.59             752.67  1 1 

Obs 50      20,834.76             752.22  1 0 

Obs 51      22,756.41             678.87  1 0 
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