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Abstract: Cost estimating often relies on the log-transformed ordinary least squares method for the 

development of cost estimating relationships. This method has weaknesses; the most significant of which is 

that it provides estimates that are biased low. These deficiencies can be corrected, and predictive accuracy 

can be improved, using modern regression methods and applying machine learning techniques. Statisticians 

have found that predictive accuracy can be even further improved through the combination of multiple 

models in an ensemble, or crowd approach.  

The article discusses these methods in detail and applies them to an extensive dataset of 192 Army systems. 

Data analysis reveals several types of cost estimating relationships based on release type, release rhythm, 

and categories of data. This article discusses significance testing and goodness-of-fit metrics for all models 

developed. 

Introduction 

Cost estimating is defined as the process of 

collecting and analyzing historical data and 

applying quantitative models, techniques, tools, 

and databases to predict the future cost of an 

item, product, program or task. Commonly, Log-

Transformed Ordinary Least Squares (LOLS) 

method is used in the development of cost 

estimating relationships (CERs). There are some 

disadvantages with using LOLS: estimates are 

usually biased low and, in some cases, the 

estimates are not optimal.  

LOLS is biased in the sense that it is estimating 

the median, rather than the mean, of a 

lognormally distributed estimate. For a 

lognormal, the median is always less than the 

mean. This is an issue in cost estimating as 

estimates are rarely conducted in isolation, but 

rather as part of a larger WBS or a portfolio of 

systems. When these values are summed, the 

resulting total is less than the median of the total 

estimate. However, the means always add, so it is 

important to develop estimates at the mean 

value. (Smart 2017) 

To correct for the bias, analysts can consider 

applying nonlinear regression methods and 

machine learning methods to develop models and 

predict future costs. In this paper, we will provide 

introductions to these less commonly used 

methods and discuss how the results can be 

combined to increase the predictive accuracy of 

cost estimates.  

Using a dataset of Army software programs, the 

analysis will compare results of a log-

transformed OLS model to the results using the 

application of cross-validation using a crowd 

approach to determine how predictive power is 

influenced by this method. 
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Understanding the Crowd Approach 
Many people have encountered a situation in which they had to solve a math problem and used more than 
one way to solve it. As long as both methods yielded the same result, it is reasonable to think this would 
provide more confidence in the answer. In studying machine learning, research has shown that using multiple 
methods can improve predictive accuracy. For example, John Elder has been a pioneer in the use of ensemble 
models and has repeatedly found this to be the case (Elder 2003). Typically, when a model is too complex, it 
does not predict well in practice. However, the more models one uses, the more complex the overall 
prediction engine, but the predictions do better in practice than single models used by themselves. This was a 
revelation to the authors. 

An early example of ensemble predictions is a competition to guess the weight of an ox at an English county 
fair in 1906. Eight hundred people entered the contest. The statistician Francis Galton (he coined the term 
regression) was interested in the results, and thought that the average, or mean, result, would be far from the 
actual weight. He was surprised to discover that the actual weight of 1,197 pounds was only one pound from 
the mean of the 800 submissions. (Surowiecki 2004) 

More recently, the data science company Kaggle started hosting competitions to solve problems requiring 
prediction. The best known of these is the $1 million Netflix prize, where people submitted models to 
improve the company’s recommendation system. The catch with Kaggle submissions is that you get a score 
on how you do, but you cannot see the actuals to see the error of each estimate. Ensemble techniques have 
consistently proven to be crucial to winning submissions to these competitions, including the Netflix prize. In 
that particular competition, two teams tied for first. The tie breaker went to the team who submitted first. 
The first-place finisher submitted twenty minutes before the second-place finisher and won the entire $1 
million prize. (Siegel 2016) 

Ensembles are prominent in weather forecasting, especially in storm prediction. Whenever a tropical storm 
or a hurricane is discussed in a weather forecast, there will be a predicted plot for several different models. 
Most model predictions will cluster near a common path, but occasionally one or two predictions may be very 
different. The true path will likely be much closer to the path most of the model predictions rather than the 
outliers. Using multiple models helps to avoid being influenced by such predictions. 

The idea is counter-intuitive. In most applications, you should expect that the best is better than the average. 
You would not expect two mediocre athletes to perform better on average than a superstar. However, that is 
what happens with models. The average of several models, some of which may be good, and others that may 
be mediocre, will on average perform better than the best model. Studies have shown the improvement 
ranges between five and 30 percent. Even better, using ensembles has been shown to improve out-of-sample 
prediction, meaning that models will predict well when used in practice. (Siegel 2016) 

In The Wisdom of Crowds by James Suroweicki (2004), the concept of the crowd approach is discussed. When 
you put together a large enough and diverse enough group of people and ask them to make decisions affecting 
matters of general interest, that group’s decisions will be intellectually superior to the isolated individual. 
Applying this concept to cost estimating, we can determine that in the right circumstances, an average 
forecast is better than a single forecast.  

The use of multiple techniques for prediction is called the ensemble approach. An ensemble is a group of 
items viewed as a whole rather than individually. Suppose we have multiple models from which we would 
like to choose the “best”. The models could be constructed using different datasets, methods, variables or 
equation forms. 

There are (at least) two ways to combine estimates: 

• Using a simple average
• Using a more general method that considers correlation between the estimates

75



 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022 

Leveraging the Wisdom of Crowds with Modern Regression, Machine Learning, and Ensembles …  Christian B. Smart, et al 

We will examine the benefits to be obtained by each of these methods. 

Simple Averaging 
Simple averaging combines the estimates by computing the means of the estimates. 

(𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛)/𝑛𝑛 

Let the residuals of a cost estimating relationship (CER) equation be defined by 𝜀𝜀. The residuals could be: 

• Absolute, as with a linear equation: 𝜀𝜀 = 𝑦𝑦 − 𝑓𝑓(𝑥𝑥)
• Percentage, as with a nonlinear equation: 𝜀𝜀 = 𝑦𝑦−𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑋𝑋)

Regardless of the residual form, the variance of an individual is defined as 𝜎𝜎�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 = 𝐸𝐸[𝜀𝜀2]. If there are 

multiple equations, the variance of the average of the CERs is 𝜎𝜎�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 = 𝐸𝐸 ��1
𝑁𝑁
∑ 𝜀𝜀𝑛𝑛
𝑖𝑖=1 �

2
�. Assuming

independence, 

𝜎𝜎�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒2 = 𝐸𝐸 ��
1
𝑁𝑁
�𝜀𝜀
𝑛𝑛

𝑖𝑖=1

�
2

� =
1
𝑁𝑁2 𝐸𝐸 ��𝜀𝜀2

𝑛𝑛

𝑖𝑖=1

� +
1
𝑁𝑁2 𝐸𝐸 ��𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗

𝑖𝑖≠𝑗𝑗

� 

= 1
𝑁𝑁2
𝐸𝐸[∑ 𝜀𝜀2𝑛𝑛

𝑖𝑖=1 ] = 1
𝑁𝑁
�∑ 𝜀𝜀2𝑛𝑛

𝑖𝑖=1
𝑁𝑁

�.

The quantity �∑ 𝜀𝜀2𝑛𝑛
𝑖𝑖=1
𝑁𝑁

� is the mean of the variances of the individual models. Thus, the SPE of the average of the 
models is the average of the variances divided by N. 

For example, suppose for two nonlinear models, we have standard deviations equal to 30 percent and 50 
percent, respectively. The first model has variance =0.32=0.09 and the second model has variance =0.52=0.25. 

The variance of the simple average is 1
2
�0.09+0.25

2
� = 0.085, which is lower than the better of the two models. 

By reducing the variance, we have also decreased the uncertainty in the estimate. 

Weighted Average 
With the simple average, we observe improvement over a single model. What happens when our estimates 
are correlated, meaning, they use the same data sources or we are comparing similar methods and model 
forms? When this occurs, the need to use the weighted average approach to incorporate correlation arises. 

To calculate the weighted average among models, a correlation matrix, nxn, between the estimates should be 
created.  

The i,jth element of the correlation matrix is 𝑬𝑬�𝜺𝜺𝒊𝒊𝜺𝜺𝒋𝒋� . Let 𝜶𝜶 denoted the nx1 vector of weights for the 
estimates. 

The SPE of the weighted average is 𝜶𝜶𝑻𝑻𝑪𝑪𝑪𝑪. The weights should be constrained so that their sum is equal to 1, 
and the weights should be chosen to minimize the SPE. 

With these constraints, we use the Lagrangian multipliers method and minimize 

𝑳𝑳 = 𝜶𝜶𝑻𝑻𝑪𝑪𝑪𝑪 − 𝟐𝟐𝟐𝟐�𝜶𝜶𝑻𝑻𝟏𝟏��⃗ − 𝟏𝟏� 

 where 𝟏𝟏��⃗  denotes the nx1 vector of all 1s. 
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To minimize, we take the first derivative and set it equal to 0. 

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟏𝟏��⃗ = 𝟎𝟎 

Rewriting yields 

𝟐𝟐𝟐𝟐𝟐𝟐 = 𝟐𝟐𝟐𝟐𝟏𝟏��⃗  

Dividing both sides by 2 and multiplying both sides by C-1 results in 

𝜶𝜶 = 𝝀𝝀𝝀𝝀−𝟏𝟏𝟏𝟏��⃗  

Multiplying both sides by 𝟏𝟏��⃗ 𝑻𝑻 yields 

𝟏𝟏��⃗ 𝑻𝑻𝜶𝜶 = 𝝀𝝀𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗  

The left side of the equation is the sum of the weights, which we constrained to be 1, thus 

𝝀𝝀 =
𝟏𝟏

𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗

Since 𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗ = ∑ ∑ 𝑪𝑪𝒊𝒊𝒊𝒊−𝟏𝟏𝒏𝒏
𝒋𝒋=𝟏𝟏

𝒏𝒏
𝒊𝒊=𝟏𝟏 , if we plug the expression 𝝀𝝀 back into 𝜶𝜶 = 𝝀𝝀𝝀𝝀−𝟏𝟏𝟏𝟏��⃗  the result is 

𝜶𝜶 =
𝑪𝑪−𝟏𝟏𝟏𝟏��⃗

∑ ∑ 𝑪𝑪𝒊𝒊𝒊𝒊−𝟏𝟏𝒏𝒏
𝒋𝒋=𝟏𝟏

𝒏𝒏
𝒊𝒊=𝟏𝟏

The SPE of the weighted average method is equal to 

𝑴𝑴𝑴𝑴𝑴𝑴 = �𝑪𝑪
−𝟏𝟏𝟏𝟏��⃗ �

𝑻𝑻
𝑪𝑪�𝑪𝑪−𝟏𝟏𝟏𝟏��⃗ �

�∑ ∑ 𝑪𝑪𝒊𝒊𝒊𝒊
−𝟏𝟏𝒏𝒏

𝒋𝒋=𝟏𝟏
𝒏𝒏
𝒊𝒊=𝟏𝟏 �

𝟐𝟐 = 𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗

�𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗ �
𝟐𝟐 = 𝟏𝟏

𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗
= 𝟏𝟏

∑ ∑ 𝑪𝑪𝒊𝒊𝒊𝒊
−𝟏𝟏𝒏𝒏

𝒋𝒋=𝟏𝟏
𝒏𝒏
𝒊𝒊=𝟏𝟏

 

In the uncorrelated case, 

𝜶𝜶𝒊𝒊 =

𝟏𝟏
𝝈𝝈�𝒊𝒊𝟐𝟐

∑ 𝟏𝟏
𝝈𝝈�𝒋𝒋𝟐𝟐

𝒏𝒏
𝒋𝒋=𝟏𝟏

 𝑴𝑴𝑴𝑴𝑴𝑴 =
𝟏𝟏

∑ 𝟏𝟏
𝝈𝝈�𝒊𝒊𝟐𝟐

𝒏𝒏
𝒊𝒊=𝟏𝟏

To compare the weighted average SPE with others (in the uncorrelated case), we need the following: 

Lemma – If a and b are positive numbers, then 𝒂𝒂
𝒃𝒃

+ 𝒃𝒃
𝒂𝒂
≥ 𝟐𝟐 with equality when a =b

Proof: 

(𝒂𝒂 − 𝒃𝒃)𝟐𝟐 ≥ 𝟎𝟎 

if and only if 

𝐚𝐚𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝐛𝐛𝟐𝟐 ≥ 𝟎𝟎 

if and only if 

𝐚𝐚𝟐𝟐 + 𝐛𝐛𝟐𝟐 ≥ 𝟐𝟐𝟐𝟐𝟐𝟐 
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if and only if 

𝒂𝒂
𝒃𝒃

+
𝒃𝒃
𝒂𝒂
≥ 𝟐𝟐 

Comparing Simple Average to Weighted Average 
The Variance of the weighted average is less than or equal to the SPE of the simple average with equality only 
when all the individual SPEs are the same. Note that: 

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =
𝟏𝟏
𝑵𝑵𝟐𝟐�𝝈𝝈�𝒊𝒊𝟐𝟐

𝑵𝑵

𝒊𝒊=𝟏𝟏

 

𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 = 𝟏𝟏

∑ 𝟏𝟏
𝛔𝛔�𝐢𝐢
𝟐𝟐

𝐧𝐧
𝐢𝐢=𝟏𝟏

The weighted average variance is smaller than the simple average variance. To see this, consider 

𝟏𝟏
𝐍𝐍𝟐𝟐
∑ 𝛔𝛔�𝐢𝐢𝟐𝟐 ≥𝐍𝐍
𝐢𝐢=𝟏𝟏  𝟏𝟏

∑ 𝟏𝟏
𝛔𝛔�𝐣𝐣
𝟐𝟐

𝐍𝐍
𝐣𝐣=𝟏𝟏

This is true if and only if 

�𝝈𝝈�𝒊𝒊𝟐𝟐�
𝟏𝟏
𝝈𝝈�𝒋𝒋𝟐𝟐

𝑵𝑵

𝒋𝒋=𝟏𝟏

≥
𝑵𝑵

𝒊𝒊=𝟏𝟏

𝑵𝑵𝟐𝟐 

The left side of this inequality is a sum of ratios 

𝝈𝝈�𝒊𝒊𝟐𝟐
𝟏𝟏
𝝈𝝈�𝒋𝒋𝟐𝟐

This expression is equal to 1 when 𝑖𝑖 = 𝑗𝑗. When 𝑖𝑖 ≠ 𝑗𝑗, there is always a pair 𝝈𝝈�𝒊𝒊
𝟐𝟐

𝝈𝝈�𝒋𝒋
𝟐𝟐 +

𝝈𝝈�𝒋𝒋
𝟐𝟐

𝝈𝝈�𝒊𝒊
𝟐𝟐. There are N values for 𝑖𝑖 = 𝑗𝑗 

and for other pairs there are �𝑵𝑵𝟐𝟐� = 𝑵𝑵(𝑵𝑵−𝟏𝟏)
𝟐𝟐

 values. Therefore, the expression on the left, using the Lemma, is at 

least 𝐍𝐍 + 𝟐𝟐 ∗ 𝐍𝐍(𝐍𝐍−𝟏𝟏)
𝟐𝟐

= 𝐍𝐍 + 𝐍𝐍𝟐𝟐 − 𝐍𝐍 = 𝐍𝐍𝟐𝟐 and equality only occurs if all the variances are equal. Therefore, the 
weighted average variance is smaller than the simple average variance and is strictly smaller when the 
variances are not all the same value. 

We can also show that the weighted average has a variance smaller than the best single model in a crowd. 
Recall that 𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝟏𝟏

∑ 𝟏𝟏
𝝈𝝈�𝒊𝒊
𝟐𝟐

𝒏𝒏
𝒊𝒊=𝟏𝟏

. To see that the variance of the weighted average is less than or equal 

to the minimum of the individual variances, note that 

𝝈𝝈�𝑴𝑴𝑴𝑴𝑴𝑴𝟐𝟐 ≥ 𝟏𝟏

∑ 𝟏𝟏
𝝈𝝈�𝒊𝒊
𝟐𝟐

𝒏𝒏
𝒊𝒊=𝟏𝟏

 if and only if 

𝝈𝝈�𝑴𝑴𝑴𝑴𝑴𝑴𝟐𝟐 �
𝟏𝟏
𝝈𝝈�𝒊𝒊𝟐𝟐

𝒏𝒏

𝒊𝒊=𝟏𝟏

≥ 𝟏𝟏 

Without loss of generality, assume 𝝈𝝈�𝟏𝟏𝟐𝟐 = 𝝈𝝈�𝑴𝑴𝑴𝑴𝑴𝑴𝟐𝟐 . Then, 𝝈𝝈�𝑴𝑴𝑴𝑴𝑴𝑴𝟐𝟐 � 𝟏𝟏
𝝈𝝈�𝟏𝟏
𝟐𝟐 + ⋯+ 𝟏𝟏

𝝈𝝈�𝑵𝑵
𝟐𝟐�= 𝟏𝟏 + 𝝈𝝈�𝑴𝑴𝑴𝑴𝑴𝑴𝟐𝟐  � 𝟏𝟏

𝝈𝝈�𝟐𝟐
𝟐𝟐 + ⋯+ 𝟏𝟏

𝝈𝝈�𝑵𝑵
𝟐𝟐� ≥ 𝟏𝟏. 

In summary, the weighted average approach should be used when estimates or datasets are correlated. 
Though, in analyses with few data points, correlation estimates may not be as accurate as the simple average. 
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Practical Example Using Army Data 
Army Data Description 
Through the support of Office of the Deputy Assistant Secretary of the Army – Cost and Economics (DASA-CE) 
leadership, the software sustainment initiative has succeeded over the past five years of moving the U.S. Army 
from a position of making educated guesses on what was being spent on software sustainment and its utility, 
to being able to provide deep insights from an Army-wide perspective into how software sustainment is being 
performed, how much it costs, and what software is being delivered to the warfighter. The initiative created 
an Army Software Sustainment Data Questionnaire which is used to collect system context-information, 
annual cost and effort data, software release data, and data on software licenses. 

The information in the database includes software release level data as well as management and process data 
on over 192 Army systems in sustainment. The information in the database supports the detailed analysis of 
software sustainment cost, schedule and risk drivers, and provides insight into the state of software 
sustainment management and processes practices. 

The results establish a robust foundation for software sustainment fact-based decisions, including: 

• Allocations of Costs by Work Breakdown Structure (WBS) Elements
• Cost & Schedule Estimating Relationships
• Cost Benchmarks

The amount of data collected resulted in over 411,000 repository data fields based on 192 Systems, 1,040 
Releases and 3,434 software licenses, Figure 1. 

The Army dataset used for this analysis includes the following variables: 

• Total Release Hours (Dependent)
• Super Domain (Independent)
• Total Software Changes (Independent)
• Acquisition Category (ACAT) (Independent)

These variables were selected based on the causal analysis on the data (Jones, et al. 2020). Total Release 
Hours is defined as the effort (in hours) required to maintain software in the WBS Element 1.0, Software 
Change Product. This effort changes the software to improve its capability or repair a problem. When systems 
were divided into application super domains, there were 93 Real-Time Systems (RT), 47 Engineering Systems 
(ENG), 33 Automation Information Systems (AIS), 13 Support Systems (SUP), and 6 Defense Business Systems 

Figure 1. Data Demographics 
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(DBS). In the dataset used for this analysis, there are no DBS datapoints. These three independent variables 
were identified as being influential in past studies conducted by the army. See “Using Army Software 
Sustainment Cost Estimating Results (DASA-CE)” from September 2018 for more details. 

Systems were asked to report the size measures that were used within their program. Software Changes (SC) 
was the most common size measure with data provided for 571 releases. SCs are enhancements or 
maintenance changes to the software.  

US DoD’s ACAT levels are also analyzed. There are three levels and an additional category for non-Program of 
Record (non-POR). The difference between each level depends on the location of a program in the acquisition 
process, funding amount for Research, Development, Test and Evaluation, total procurement cost, Milestone 
Decision Authority special interest and decision authority. ACAT I programs are major defense acquisition 
programs. 

The upper and lower 10% of the data was trimmed from the dataset to subset extreme cases for separate 
analysis. Trimming was based on unit cost (total release hours / #software changes). While the data had been 
scrubbed for hours and cost outliers, some of the unit costs were extremely low and some were extremely 
high. 

Using the trimmed dataset, we used two nonlinear methods and four machine learning methods to predict 
Total Hours given Super Domain, Total Software Changes, and ACAT level.  

Nonlinear Regression Methods 
We will introduce two nonlinear methods: Maximum Likelihood Estimation Regression for Lognormal Error 
(MRLN) and Zero-Percent Bias Minimum Percent Error (ZMPE). Dr. Christian Smart developed the MRLN 
method, which uses Maximum Likelihood Estimation (MLE) to directly estimate the mean lognormal without 
the use of transformations (Smart 2017). This method does not require lognormal transformations of either 
the dependent or independent variables. 

The likelihood function, which represents the likelihood of obtaining the sample data, is: 

𝐿𝐿(𝜃𝜃) = ∏ Pr (𝑋𝑋𝑖𝑖 = 𝐴𝐴𝑖𝑖|𝜃𝜃𝑛𝑛
𝑖𝑖=1 ). 

The vector, 𝜃𝜃, maximizes the likelihood function in the MLE. Using this technique provides a major advantage: 
the likelihood function is almost always available. LOLS is an MLE of the median when the residuals are 
lognormally distributed.  

Applying the MLE directly to the residuals yields an estimate of the lognormal mean. The goal for MRLN is to 
maximize the function: 

𝑙𝑙�𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 ,𝜃𝜃� = −
𝑛𝑛
2

 ln (𝜃𝜃) −
1

2 𝜃𝜃
��𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖) − ln (𝛽𝛽0)  −�𝛽𝛽𝑗𝑗 ln (𝑋𝑋𝑖𝑖𝑖𝑖) +

𝜃𝜃
2

𝑝𝑝

𝑗𝑗=1

�

2𝑛𝑛

𝑖𝑖=1

 

Excel Solver can be used to perform this task. When Solver converges on a solution, Excel calculates the 
optimal values for 𝒂𝒂 and b to form the power equation. 

Dr. Steve Book developed the ZMPE method, which focuses on minimizing the sum of squared errors subject 
to the constraint that the sample bias is zero.  

The goal of this method is to find a function, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)(1 + 𝜀𝜀), with a multiplicative error, 𝜀𝜀 = 𝑦𝑦−𝑓𝑓(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

, that fits a 

data set so that the following are satisfied: 

• Let y denote the actual and f(x, a, b) = a Xb denote the estimate. ZMPE minimizes  

 
��

𝒚𝒚𝒊𝒊 − 𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃)
𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃) �

𝟐𝟐𝒏𝒏

𝒊𝒊=𝟏𝟏
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 subject to the constraint that the sample bias is zero,  

 i.e.,  

 

The result is an optimal solution, 𝒂𝒂 and b, and can be calculated in Excel Solver. 

Machine Learning Methods – A Refresher 

In “Beyond Regression: Applying Machine Learning to Parametrics” (Roye, Smart 2019), multiple machine 
learning techniques were discussed in detail. Four supervised learning methods are used for this analysis and 
are briefly described in the following sections: 

• Regression Trees 
• Random Forests 
• Support Vector Machines 
• K-Nearest Neighbors 

Supervised learning techniques in machine learning is the process of an algorithm learning from a subset of a 
given dataset, referred to as the training dataset. In supervised learning, the input variables and output 
variables are named. The algorithm learns from the mapping function from the input and output. With this 
method, the goal is to approximate the mapping function so that new outputs can be predicted using new 
input data. 

Regression Trees 

A decision tree is a decision support tool useful in classifying data. Tree-based methods are options for 
analysis, because the data are split into homogenous groups, and the graphs present these splits with the use 
of branches (called decision nodes) and leaves (terminal nodes). The goal of tree-based methods is to 
partition data into smaller regions where interactions are manageable. They are useful when there is a non-
linear and complex relationship between dependent and independent variables. There are two types of trees: 
classification and regression trees. 

Regression trees are used when the dependent variable of interest is continuous. Figure 2 presents the 
components of a regression tree. 

 

Figure 2: Regression Tree Layout 

��
𝒚𝒚𝒊𝒊 − 𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃)
𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃) � = 𝟎𝟎

𝒏𝒏
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The root node represents the entire population, or most commonly, the sample dataset that is being explored. 
Decision trees recursively split a dataset into partitions based on a criterion. Starting with the root node of 
the tree, the method asks a sequence of yes and no questions to determine the decision nodes. The root node 
splits into two or more decision nodes. The decision nodes represent the first set of homogenous groups 
discovered within the dataset. When the algorithm determines which cut-off point minimizes the variance 
of y for a regression task, the branch ends in a leaf, or terminal node. Leaves represent a cell of partition and 
have a simple model for that cell; the model is the sample mean of the dependent variable. 

Figure 3 provides the regression tree using the example data. At the first decision node, if a release has less 
than 61 software changes, the left side of the tree when followed to the next decision tree node which splits 
again on less than 13 software changes. This first decision node represents the first set of homogeneous 
software releases within the dataset. Based on each smaller group, the tree splits again on either the number 
of software changes, ACAT level I or II programs, or Real Time super domain releases. The tree ends at the 
terminal nodes and provides the average Total Release Hours (lognormally transformed) of the data points 
included in each node. In Figure 3, the numbers in the oblong circles above the nodes (root, decision and 
terminal nodes) are the average Total Release Hours and the percent of the sample. At the root node, the 
average Total Release Hours is 8.42 and since this is before any splits occur, there is 100% of the sample 
included. 

 

Figure 3: SW Sustainment Regression Tree 

Random Forests 

The Random Forest algorithm can be thought of as an ensemble approach using regression trees. This 
approach combines the estimates of multiple regression trees to produce an average. Random forests have 
been proven to provide better prediction (“wisdom of the crowd” effect). They are also more stable (robust to 
small amounts of noise). However, since the predictions are rather complex, there is no single equation or 
CER. 
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Random forest adds additional randomness to a model. The algorithm searches for the best feature among a 
random subset of features, which results in more diversity that usually results in better prediction. 

Support Vector Machines 

The application of Support Vector Machines (SVM) in the 1990s to optical character recognition was very 
successful. (Boser, et al., 1992) The basic idea for classification with this method is to maximize the margin 
between classes, which yields maximally robust classification. To apply to continuous output, the analogous 
idea is to find an equation that is: 

• As “flat” as possible, i.e., the coefficients are as small as possible 
• Emphasis on sparseness, parsimony 
• Makes model less sensitive to errors in inputs  
• Minimizes the residuals that are outside a specified range of the estimate (𝜀𝜀-insensitive), e.g., 15% 

For a linear equation Y = a+bX, with n data points the problem becomes 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴:  
𝟏𝟏
𝟐𝟐

(𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐) + 𝑪𝑪 ∗�𝜹𝜹𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝒕𝒕𝒕𝒕 |𝒚𝒚𝒊𝒊 − 𝒂𝒂 − 𝒃𝒃𝒙𝒙𝒊𝒊| ≤ 𝒛𝒛 + 𝜹𝜹𝒊𝒊 𝒇𝒇𝒇𝒇𝒇𝒇 𝒂𝒂𝒂𝒂𝒂𝒂 𝒊𝒊 = 𝟏𝟏, …𝒏𝒏 

where the delta values are non-negative, and the loss function is insensitive to residuals less than z (user 
specified), and a weight equal to C is given to the errors (controls for degree of parsimony). For an example of 
insensitive losses, for a $10 million project, you may not care about the residual as long as it is no larger than 
$1 million. 

Given a nonlinear equation Y = aXb, take log transforms of the data and apply the linear support vector set up. 
The insensitivity is now in log-space – the log of the differences between the actual and the estimate. 

As an alternative to logarithmic transformation, you can apply the same notion to the absolute value of 
percentage difference between the actuals and the estimates, i.e. 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:  1
2

(𝑎𝑎2 + 𝑏𝑏2) + 𝐶𝐶 ∗ ∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1  

  𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛿𝛿𝑖𝑖 = ��
𝑦𝑦𝑖𝑖−𝑎𝑎𝑥𝑥𝑖𝑖

𝑏𝑏

𝑎𝑎𝑥𝑥𝑖𝑖
𝑏𝑏 � − 0.15 𝑖𝑖𝑖𝑖 �𝑦𝑦𝑖𝑖−𝑎𝑎𝑥𝑥𝑖𝑖

𝑏𝑏

𝑎𝑎𝑥𝑥𝑖𝑖
𝑏𝑏 � ≥ 15%

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … 𝑛𝑛 

For solving this optimization problem, Excel’s Solver capability can be used. 

Results 
First, we will present the CER developed using LOLS. 

𝑌𝑌 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)
= 6.42 − 0.55 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆 − 0.055 ∗ 𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆 − 0.95 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆 + 0.30 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.72
∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

Super Domain and ACAT were defined as categorical variables (1 or 0). If ACAT is 1, then the datapoint was 
obtained from an ACAT I or II program. As a reminder for the Super Domain designations, Real-Time Systems 
(RT), Engineering Systems (ENG), and Automation Information Systems (AIS). Super Domain and ACAT 
variables are categorical variables, while Total Software Changes and Total Release hours are continuous 
variables. 

The data used for the nonlinear and machine learning analysis was log-transformed to facilitate the 
comparison of the results to the LOLS model. 
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CERs were also developed using ZMPE and MRLN.  

Next, we will discuss how to compute the simple and weighted averages using the estimates (𝑌𝑌�) for each of 
the methods.  

For the simple average, the average of 𝑌𝑌�  for MRLN, ZMPE, Regression Trees, Random Forest, SVM, and KNN 
was calculated. This average 𝑌𝑌�  was used to calculate the goodness-of-fit statistics. 

For example, consider the estimates for the first 10 datapoints for the six methods presented in Table 1. 

 

Observation MRLN ZMPE R-Tree R-Forest SVM KNN 
1 7204.21 9768.36 5448.91 8091.82 4074.67 5222.58 
2 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 
3 7166.47 4888.93 5448.91 4597.52 5310.05 5316.64 
4 574.66 660.47 682.06 4990.52 1758.86 2467.58 
5 9015.69 12405.18 5448.91 7944.49 4695.12 3620.33 
6 2596.23 1657.38 5448.91 3695.92 3080.11 2635.91 
7 8660.85 10453.97 24690.77 13522.31 16743.01 23840.75 
8 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 
9 31608.07 47208.50 22762.34 14850.36 38877.70 32809.06 
10 2035.47 1278.89 1956.78 3248.21 2335.26 2843.57 

Table 1: Estimates for Nonlinear Prediction Methods 

 

We will then take the simple average of the estimate for the methods, such that: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑌𝑌�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑌𝑌�𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 + 𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑌𝑌�𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑌𝑌�𝐾𝐾𝐾𝐾𝐾𝐾

6
 

Table 2 presents the averages of the six explored methods for the first 10 data points. This new average 
estimate is then used to calculate the goodness-of-fit statistics. 

 

Observation MRLN ZMPE R-Tree R-Forest SVM KNN Average 
1 7204.21 9768.36 5448.91 8091.82 4074.67 5222.58 6635.09 
2 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 6380.60 
3 7166.47 4888.93 5448.91 4597.52 5310.05 5316.64 5454.75 
4 574.66 660.47 682.06 4990.52 1758.86 2467.58 1855.69 
5 9015.69 12405.18 5448.91 7944.49 4695.12 3620.33 7188.29 
6 2596.23 1657.38 5448.91 3695.92 3080.11 2635.91 3185.74 
7 8660.85 10453.97 24690.77 13522.31 16743.01 23840.75 16318.61 
8 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 6380.60 
9 31608.07 47208.50 22762.34 14850.36 38877.70 32809.06 31352.67 
10 2035.47 1278.89 1956.78 3248.21 2335.26 2843.57 2283.03 

Table 2: Estimates and Averages for Nonlinear Prediction Methods. 
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For the weighted average, the calculation is a little more involved. First, all six models were included in the 
weighted average. The algorithm returned negative weights for two models – MRLN and KNN. Because of the 
ambiguity of negative weights, we decided to remove those models, and apply the weighted average over four 
models instead. This resulted in weights for ZMPE, Regression Trees, Random Forests, and SVM equal to 
27.0%, 26.0%, 38.4%, and 8.6%, respectively. 

 
Table 3: Estimates and Weighted Averages for Nonlinear Prediction Methods. 

 

Nonlinear models need different measures of goodness-of-fit than are used for linear ones. The goodness-of-
fit measures we use are commonly used in nonlinear modeling and are the nonlinear analogues to traditional 
linear regression. These are Pearson’s R2, the Standard Percent Error, and Sample Percent Bias. 

Goodness-of-fit metrics were calculated for each method and used to compare to the LOLS model. 

• Pearson’s R2- The square of the correlation coefficient between the actual and estimated effort 
• Standard Percent Error (SPE) – The standard deviation of the difference between the actual and 

estimated effort as a percentage of the estimated effort 
• Sample Percent Bias – Average percentage error 

Pearson’s R2, which we will refer to as R2, is defined as: 
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Standard Percent Error is defined as: 

The standard percent error is a nonlinear analog to the regression standard error, and is defined as  

𝑆𝑆𝑆𝑆𝑆𝑆 =  �
1

𝑛𝑛 − 𝑘𝑘
∗��

𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)
𝑓𝑓(𝑥𝑥𝑖𝑖)

�
𝑛𝑛

𝑖𝑖=1

2

∗ 100% 

 

MRLN ZMPE R-Tree R-Forest SVM
Weighted 
Average

7204.21 9768.36 5448.91 8091.82 4074.67 7511.86
6885.73 9308.97 5448.91 8108.96 4017.75 7389.51
7166.47 4888.93 5448.91 4597.52 5310.05 4958.84

574.66 660.47 682.06 4990.52 1758.86 2423.28
9015.69 12405.18 5448.91 7944.49 4695.12 8220.58
2596.23 1657.38 5448.91 3695.92 3080.11 3548.33
8660.85 10453.97 24690.77 13522.31 16743.01 15874.64
6885.73 9308.97 5448.91 8108.96 4017.75 7389.51

31608.07 47208.50 22762.34 14850.36 38877.70 27710.52
2035.47 1278.89 1956.78 3248.21 2335.26 2302.21
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where n is the sample size, and k is the number of fitted coefficients. In this case, lower values are 
desired. 

Sample Percent Bias, which we refer to as Bias, and is defined as: 

��
𝒚𝒚𝒊𝒊 − 𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

� /𝒏𝒏
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

The goodness-of-fit statistics were calculated for the in-sample and out-of-sample datapoints. For machine 
learning techniques, a training and a test sample from the dataset are randomly sampled. For this analysis, an 
80% training sample (211 data points) was taken from the dataset, with the remaining 20% (52 data points) 
being used for testing. The training sample is used to fit each machine learning model, while the test sample 
provides an unbiased evaluation of the final model fit on the training sample. The in-sample results are 
calculated from the training sample; the out-of-sample results are calculated from the test sample. 

The machine learning methods were all biased low initially because of the log transformation. A sample bias 
correction adjustment was made, in line with the adjustment MRLN makes, to correct for this sample bias. 

The in-sample results are shown in Table 4 and the out-of-sample results are displayed in Table 5. 

Method (In-Sample) R2 SPE Bias 
LOLS 51.10% 178.74% -58.17%
MRLN 51.10% 104.34% 2.20%
ZMPE 47.87% 97.93% 0.00%
Regression Trees 62.01% 124.40% 0.00%
Random Forest 47.08% 133.74% 0.00%
SVM 63.90% 135.72% 0.00%
KNN 57.50% 123.43% 0.00%
Simple Average 62.69% 97.05% 13.56%
Weighted Average* 61.45%  78.91% 37.19% 

Table 4: Goodness-of-Fit Statistics for the In-Sample Data 

Method (Out-of-Sample) R2 SPE Bias 
LOLS 92.52% 263.15% -98.57%
MRLN 92.52% 151.20% -22.78%
ZMPE 90.71% 143.79% -17.99%
Regression Trees 84.84% 241.76% -67.21%
Random Forest 45.59% 307.37% -48.03%
SVM 45.18% 262.01% -44.26%
KNN 65.55% 289.17% -54.06%
Simple Average 91.88% 216.40% -51.82%
Weighted Average* 90.10% 153.78% -10.10%

Table 5. Goodness-of-Fit Statistics for the Out-of-Sample Data 
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For the in-sample data, the single best SPE belongs to ZMPE, followed by MRLN. Among single models, SVM 
has the highest R2, followed by MRLN. The simple average has an R2 comparable to the best of any single 
model, along with an SPE comparable to the best of any single model. The weighted average has a similar R2 
but a much smaller SPE – however it has a significantly positive bias. 

The out-of-sample data is a better indicator of how the models will perform when applied in practice, as the 
coefficients were not influenced by any of these data. For the out-of-sample data, ZMPE and MRLN are the 
two best single models – they both have R2s in excess of 90%, and SPEs significantly better than the other 
methods. Out-of-sample R2s can sometimes outperform in-sample R2s if the training data contains more 
complicated relationships between the dependent and independent variables than the test dataset. The 
simple average has a -50% bias and a much higher SPE than MRLN or ZMPE. The weighted average, however, 
has an R2 and an SPE, that is comparable to both MRLN and ZMPE, as well as a lower bias. The weighted 
average is better overall than any single model. 

Conclusion 
Whether the scenario involves guessing the weight of an animal at a county fair or trying to determine how 
much a new variant of a combat vehicle will cost, an ensemble approach can often produce a better estimate 
than a single model. This is a little counterintuitive. To obtain the cost estimate for a program, one might 
think it would be optimal to find the best cost model to give you an estimate. But a better result may be 
obtained by averaging estimates from two (or more) mediocre cost models instead. Ensembles seem to 
consistently produce more accurate estimates.  

The authors applied the ensemble concept to estimating Army software sustainment costs. For these data, we 
have shown that weighted averages generalize better than most models and perform as well or better out of 
sample than the single best model. Though it is often most common to produce a single regression estimate, 
introducing the ensemble approach can increase the accuracy of prediction. The authors also applied machine 
learning methods that can compete with traditional regression methods. 

In Appendix A, an additional concept of cross validation is discussed. Though this method was not 
implemented in this paper, it is an important concept to consider. 
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