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Introduction and Context 

The Budget Control Act (BCA) initiated 

substantial budget cuts to reduce spending 

within the federal government (2011). Inside the 

Department of Defense (DoD), sequestration – 

the unofficial title given to the BCA – drastically 

reduced spending for military operations and 

defense acquisitions. In the years that followed, 

various pieces of legislation were passed to 

modernize and streamline the defense 

acquisition process to facilitate the reduction in 

defense spending. Much of this legislation focused 

on increasing the useable lifecycle of defense 

systems and reducing development costs; 

however, these changes alone were not 

substantial enough to create meaningful and 

lasting change. To address this gap and other 

modernization efforts, the National Defense 

Strategy (NDS) was updated for the first time in 

over ten years. 

As a strategic document, the NDS “provides a 

clear road map for the [DoD] to meet the 

challenges posed by a re-emergence of long-term 

strategic competition with China and 

Russia” (DoD, n.d.). To this end, the NDS outlines 

several strategic objectives, including “sustaining 

Joint Force military advantages, both globally and 

in key regions, . . . defending allies from military 

aggression and bolstering partners against 

coercion, fairly sharing responsibilities for 

common defense; . . . [and] continuously 

delivering performance with affordability and 

speed” (DoD, 2018, p. 4). With respect to the 

equipment service members require to execute 

their global mission, the latter objective cannot 

be achieved without changes to how the DoD 

approaches the design, development, and 
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acquisition of military technology. In a budget-

constrained environment, this imperative 

becomes increasingly more important. 

Notably, even prior to the initiation of 

sequestration, researchers found that most of a 

program’s life cycle costs are often committed 

early in the system design process without 

knowledge of future requirements (e.g., Blanchard 

& Fabrycky, 1998, p. 37; Dowlatshahi, 1992, p. 

1803). Put simply, the architectural choices made 

by systems engineers today have profound 

implications for a system’s total cost at 

retirement. The inability to forecast this structural 

dependence reduces the DoD’s ability to be 

responsive and flexible to future capability gaps. 

Unfortunately, despite the opportunity to affect 

substantive change on the resulting cost of the 

system early in its life cycle, it is difficult to 

anticipate how requirements will change over 

time. For example, researchers found that more 

than 10% of a system’s baseline requirements will 

change during the development phase of a 

system’s life cycle (Pen a & Valerdi, 2015, pp. 63-

65). Recognizing this uncertainty and its 

implications, the NDS identified “reforming the 

Department’s business practices for greater 

performance and affordability” as one of its key 

lines of effort (DoD, 2018, p. 5).  

Within the performance and affordability line of 

effort, the NDS outlines five competitive 

approaches to improving the DoD’s practices, 

namely: “[1] deliver performance at the speed of 

relevance . . . [2] organize for innovation . . . [3] 

drive budget discipline and affordability to 

achieve solvency . . . [4] streamline rapid, iterative 

approaches from development to fielding . . . [5] 

Figure 1. AAF Pathways (USD(A&S), 2020b, p. 5.) 
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harness and protect the Nation Security 

Innovation Base” (DoD, 2018, pp. 10-11). While 

each of these approaches is worthy of intense 

pursuit, particularly streamlining development 

and fielding processes, the appropriate 

mechanisms must be in place for the right 

capabilities to reach service members at the right 

time. Recognizing this imperative, two years 

following the 2018 update to the NDS, the DoD 

issued DoD Instruction (DoDI) 5000.02 – Operation 

of the Adaptive Acquisition Framework (AAF). 

With the NDS’s priorities and focus on improving 

the DoD’s ability to deliver improved technical 

solutions at a reduced cost, “[t]he AAF supports 

the [Defense Acquisition System] with the 

objective of delivering effective, suitable, 

survivable, sustainable, and affordable solutions 

to the end user in a timely manner” (USD(A&S), 

2020a, p. 3). Figure 1 depicts the AAF’s six 

pathways, each of which is tailored to the desired 

capability gap. Within the scope of this research, 

we focus specifically on Major Capability 

Acquisition efforts, which consist of an initial 

Material Development Decision (MDD), followed 

by a series of critical milestones (MS). 

Following the MDD, but prior to MS A, there are 

several key considerations with respect to the 

system itself, including “technical, cost and 

schedule risks, and the plans and funding to offset 

them during the [Technology Maturation and Risk 

Reduction] TMRR phase” (USD(A&S), 2020b, p. 

12). This involves the designated PM conducting 

an analysis of the “Should Cost” 

targets, which are directly tied to 

the requirements specified in the 

Initial Capabilities Document. 

These targets are critical, as they 

establish the foundation for 

executing the final Request for 

Proposals and the cost for 

incorrectly doing so are high. For 

example, a RAND Project Air Force 

study found that across 35 mature 

programs unstable requirements 

accounted for a 12.9% increase in 

total costs (Bolten, Leonard, Arena, Younossi, & 

Sollinger, 2008, p. 72). In FY2005 dollars, this 

translated to a $23.7 billion increase. Additionally, 

between 1997 and 2009, the majority of Nunn-

McCurdy Breaches (significant cost overruns that 

must be statutorily reported to Congress) cited 

engineering/design issues and requirement 

changes as significant factors contributing to their 

programs’ unexcepted, excessive cost growth 

(GAO, 2011, p. 5). 

Taken together, these findings support the need to 

improve two dimensions of the system design and 

acquisition process with respect to cost reduction: 

requirements development and extending the 

useable life of systems. The AAF seeks to address 

the first issue; however, as specified by the NDS, 

these solutions must not only address today’s 

capability gaps but also be capable of mitigating 

those in future environments. Additionally, they 

must do so in a cost-effective manner. In 

recognition of this necessity, the recently 

published DoDI 5000.88 – Engineering of Defense 

Systems mandates that all Major Defense 

Acquisition Programs (MDAP) require a 

formalized Systems Engineering Plan (SEP) (USD

(R&E), 2020b, p. 12). Moreover, within the SEP 

and specific to extending the useable life of 

systems, DoDI 5000.88 directed the use a Modular 

Open Systems Approach (MOSA). 

As a framework for addressing capability gaps, 

MOSA “provides an integrated business and 

technical strategy for competitive and affordable 

Figure 2. MOSA Framework (USD(R&E), 2020a, p. 4). 
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acquisition and sustainment of a new or legacy 

system (or a component within a new or legacy 

system) over the system life cycle” (USD(R&E), 

2020a, p. 2). As seen in Figure 2, this framework 

includes six elements. Specific to this research, 

architecture is a representation of the 

“fundamental concepts or properties of a system 

in its environment embodied in its elements, 

relationships, and in the principles of its design 

and evolution” (ISO, 2011, p. 2). 

Within the AAF, during Material Solutions 

Analysis and prior to MS A, MOSA forces system 

designers to consider not only the first 

instantiation of the system but also how it will 

evolve over time. In doing so, they must consider 

and communicate the system’s architecture, 

specifying how components interface with one 

another to better facilitate future changes or 

upgrades. In support of MOSA, the DoD utilizes 

the DoD Architecture Framework (DoDAF), a 

series of viewpoints and models, to communicate 

information about the system. The requirement to 

develop these models Pre-MS A not only supports 

the NDS and AAF, but more practically, provides 

analysts with rich data regarding the components 

and interfaces of the system. 

For example, the DoDAF’s Systems Viewpoint 3 

(SV-3 or Systems-Systems Matrix) “provides a 

tabular summary of the system interactions” (DoD 

DCIO, 2010, p. 209). Within the context of system 

requirements and extending the useable life of the 

system, the SV-3 depicts relationships between 

the system components that execute the system’s 

functions, providing the analyst with critical 

information that can be used to explore options 

for evolving the system over time. This ensures 

that while we may not be capable of predicting the 

future operational environment, at the earliest 

point in the systems engineering process, we can 

be more reasonably assured that the system is 

designed to remain responsive to external 

changes in a budget-constrained environment. 

Given the NDS’s focus on improving the defense 

acquisition process for a rapidly changing 

operational environment, the dire implications of 

incorrectly estimating and managing system costs, 

and the adoption of the AAF and MOSA, there 

exists a tremendous responsibility and 

opportunity to improve early life-cycle cost 

estimates.  

Exploiting an Untapped Source of Early Life 

Cycle Information – Mapping DoDAF’s Models 

to COSYSMO’s Drivers  

In a recent article, Valerdi, Dabkowski, and Dixit 

(2015) exploited the Pre-MS A availability of 

DoDAF’s models by mapping them to the drivers 

of the Constructive Systems Engineering Cost 

Model (COSYSMO), a parametric, open academic 

cost model with the following cost estimating 

relationship (CER): 

 

 

 

where: 

PMNS = systems engineering effort in person 

months (nominal schedule), 

A = calibration constant derived from 

historical project data (assume as 0.25), 

wik = weight for the ith complexity level of the 

kth size driver (i ∈ {e (easy), n (nominal), d 

(difficult)}), 

Φik = quantity of the kth size driver with 

complexity level i (k ∈ {1 (requirements), 2 

(interfaces), 3 (algorithms), 4 (operational 

scenarios)}), 

E = diseconomies of scale constant (assume 

as 1.06), and 

EMj = systems engineering effort multiplier 

for the jth cost driver  

(assume                 )  

(Valerdi, 2008, p. 34). 

Specifically, using a blend of text mining and 

social network analysis techniques, they analyzed 

(1) 
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DoDAF’s manual to identify subsets of models 

that, on a basis of doctrine, should contain useful 

information for populating COSYSMO’s 18 drivers. 

The results of this analysis are summarized 

graphically in Figure 3, where: (a) a link between 

DoDAF model X and COSYSMO driver Y indicates 

model X should be relevant for rating driver Y, (b) 

DoDAF models shaded yellow were required Pre-

MS A between 2012 and 2015 (CJCS, 2012a; CJCS, 

2012b), (c) DoDAF models highlighted with a 

black star (⁎) were required Pre-MS A between 

2015 and 2018 (CJCS, 2015), (d) DoDAF models 

with their names highlighted in green are 

currently required pre-MS A (CJCS, 2018), and (e) 

COSYSMO drivers shaded red are not linked to 

any of the DoDAF models required by the 

Capability Development Document (CDD). 

As Figure 3 shows, the collection of DoDAF 

models required Pre-MS A nearly spans 

COSYSMO’s parameters, as they cover 14 of the 18 

drivers. Additionally, several DoDAF models that 

are not explicitly required by the CDD are 

derivatives of data contained within the 

mandatory models, suggesting even greater 

coverage is possible. For example, the SV-3 is 

simply a more compact, summary representation 

of the interfaces described in the SV-1 (DoD DCIO, 

2010, p. 209).  

Exploiting this untapped, relevant source of early 

life cycle information, Valerdi et al. (2015) 

provide an algorithm for organizations to improve 

the measurement reliability of their MDAP cost 

estimates using COSYSMO (pp. 543-545). 

Figure 3. Mapping of DoDAF’s models to COSYSMO’s drivers. 
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Additionally, there are other tangential benefits 

stemming from their work, including 

opportunities for “data mining techniques . . . to 

extract knowledge from existing systems 

engineering concepts” (Valerdi et al., 2015, pp. 

546). Given the rapid proliferation of such 

techniques and their application to new domains, 

algorithms employing these methods should be 

accompanied by a detailed explanation and 

assessment of any underlying assumptions. 

Consistent with this assertion, in this paper we 

methodically examine one such algorithm, 

namely, a method for estimating the cost of 

unanticipated, evolutionary architectural growth 

via the SV-3, COSYSMO, and network science 

(Dabkowski, Valerdi, & Farr, 2014).  

 

Estimating the Cost of Architectural Growth 

Early in the Life Cycle  

In “Exploiting Architectural Communities in Early 

Life Cycle Cost Estimation,” Dabkowski et al. 

(2014) estimate the cost of adding a future 

subsystem (X) to an existing system architecture 

when the purpose and function of X are unknown. 

Consisting of 12 steps and seen in Algorithm 1 

below, their approach leverages the current SV-

3’s structural properties to iteratively and 

randomly attach X to architectural modules (or 

communities), generate interfaces of reasonable 

complexity, and estimate the marginal cost of 

attachment.  

Algorithm 1 (Dabkowski et al., 2014, p. 101) 

For a specified, suitably large number of 

iterations . . .  

Preprocessing  

(1) Initialize the system as the current 

system, 

(2) Use the Girvan-Newman (2002) 

community detection heuristic to identify 

architectural communities, 

(3) Randomly assign X to community k, 

Intracommunity Growth 

(4) Generate a realization for Mx,intra given X 

is assigned to community k (mintra), 

(5) Connect X to mintra subsystems inside 

community k using the Baraba si-Albert 

(BA) model (1999), 

(6) For each interface established in (5), 

assign complexity (wiX,intra), 

Intercommunity Growth 

(7) Generate a realization for MX,inter given U 

is assigned to community k (minter), 

(8) Connect U to minter communities using 

the BA model, 

(9) For each interface established in (8), 

assign complexity (wiX,inter), 

Cost Estimation 

(10) Estimate the cost for the augmented 

system using COSYSMO (PMNS*), 

(11) Calculate the additional cost of adding 

subsystem U (PMNS* − PMNS), and 

(12) Store results and return to (3). 

For example and without loss of generality, 

imagine the hypothetical SV-3 in Panel (a) of 

Figure 4 serves as the current system in Step (1) 

of Algorithm 1. With 8 subsystems and 12 

interfaces, this SV-3 graphically summarizes the 

relationships between existing subsystems, where 

shading in row i and column j implies subsystem i 

interfaces with subsystem j, and darker shades 

indicate greater interface complexity. Moving to 

Step (2), given the emphasis on MOSA within the 

DoD (USD(R&E), 2020b), we suspect that the 

current system’s architecture might contain 

communities of subsystems where the density 

of interfaces within communities is high relative 

to the density of interfaces between them. To 

identify and exploit this structure, we apply the 

popular Girvan-Newman (2002) community 

detection heuristic, which yields the permuted, 

isomorphic SV-3 seen in Panel (b) of Figure 4. In 

Step (3), subsystem X is randomly assigned to one 

the current system’s two architectural 

communities, namely C1 or C2.  
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Continuing with the example, suppose 

subsystem X is assigned to C1. Using a 

rich-by-birth effect, the number of 

subsystems X interfaces with in C1 is 

modeled as a discrete random variable 

(MX,intra) with a probability mass 

function (PMF) equal to the observed 

intracommunity degree distribution of 

C1’s subsystems. By inspection, C1’s 

PMF for MX,intra is P(MX,intra = 2) = 0.5 

and P(MX,intra = 3) = 0.5. As per Step (4), 

we generate a realization (mintra) from 

this PMF to represent the number of X’s 

intracommunity interfaces.  

Assuming mintra = 2, we connect X to 2 

subsystems in C1 using the BA model from 

network science, which mimics a rich-get-richer 

effect. Observed in a variety of real-world 

networks (e.g., Redner, 1998; Banavar, Maritan, & 

Rinaldo, 1999; Newman, 2001; Cancho, Janssen, 

& Sole , 2001), the BA model specifies that the 

probability of X attaching to an existing 

subsystem i in C1 is proportional to i’s number of 

intracommunity interfaces (Baraba si & Albert, 

1999). In Panel (b) of Figure 4, C1’s subsystems 

A, D, F, and H have degrees 2, 3, 3, and 2, 

respectively. Accordingly, their corresponding 

attachment probabilities are 0.2, 0.3, 0.3, and 0.2, 

and in Step (5) we use these probabilities to 

determine X’s adjacency.  

If Step (5) determines that X connects to 

subsystem A, then in Step (6) we use the 

observed interface complexity distribution of 

subsystem A as the PMF for the complexity of the 

interface between X and subsystem A (wAX). 

Specifically, one of A’s existing interfaces is rated 

easy, and the other is rated nominal. 

Accordingly, we apply the relative weights for 

COSYSMO’s number of major interfaces size 

driver (Valerdi, 2008, p. 86) to obtain the 

following PMF for wAX:  

P(wAX = 1.1) = 0.5 and P(wAX = 2.8) = 0.5 , and a 

Bernoulli trial determines the outcome. 

 

Steps (7) through (9) model intercommunity 

growth in a manner similar to Steps (4) through 

(6), and Steps (10) and (11) apply COSYSMO’s 

CER to calculate the marginal cost of attachment. 

Finally, Step (12) completes the loop and 

captures the result. Subsequent iteration 

generates the data necessary to estimate the 

cumulative distribution functions and statistics 

for the estimated cost of adding subsystem X to 

C1 and C2. 

 

Algorithm 1’s Underlying Assumptions and 

Associated Hypotheses  

Although Algorithm 1 has intuitive appeal, the 

validity of its underlying assumptions must be 

assessed. Starting with its principal input, we 

note that an SV-3 is nothing more than the 

adjacency matrix representation of a network, 

where nodes symbolize subsystems and edges 

denote interfaces. As such, if Dabkowski et al. 

(2014) have designed the right algorithm (i.e., 

Algorithm 1 is valid), the networks represented 

by real-world SV-3s will be similar to the 

hypothetical example in Figure 4. 

Methodologically, network similarity is typically 

assessed by comparing a list of structural 

statistics (Shore & Lubin, 2015), but selecting 

which statistics to compare is a matter of debate. 

With this in mind, study objectives typically drive 

the selection (e.g., Hunter, Goodreau, & Handcock, 

2008), and our primary goal is to determine 

Figure 4. Hypothetical SV-3 with 8 subsystems and 12 interfaces in its 

original (Panel (a)) and permuted (Panel (b)) forms, where shading 

indicates interface complexity such that light gray ⇒ easy, medium 

gray ⇒ nominal, and black ⇒ difficult. 
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whether Algorithm 1 can accommodate real-

world SV-3s. Therefore, we restrict our focus to 

three characteristics, namely: type, density, and 

community structure. 

With respect to type, we note that the 

hypothetical example reflects the interfaces that 

exist between a single set of subsystems. 

Specifically, the subsystems represented by the 

rows match those identified in the columns. In 

the parlance of network analysis, this is known as 

a one-mode network (Wasserman & Faust, 

2009, p. 36-37). Moreover, upon closer 

examination, we note that the hypothetical 

example is symmetric across its main diagonal, 

implying the interfaces are bidirectional; the 

network is undirected. Finally, as mentioned 

earlier, the hypothetical example’s cells are 

shaded according to interface complexities, which 

ultimately map to numerical weights in 

COSYSMO’s CER. Accordingly, the network is 

valued. Taken together, Algorithm 1 accepts one-

mode, undirected, valued SV-3s as input, and 

our first hypothesis is as follows: (H1) – Real-

world SV-3s are one-mode, undirected, valued 

networks. 

Moving on to density, Algorithm 1 makes use of 

the Girvan-Newman community detection 

heuristic, which “was designed with sparse 

networks in mind, . . . [and] may not perform as 

well on dense networks” (2002, p. 7826). 

Formulaically, the sparsity of a one-mode, 

undirected network with N nodes can be assessed 

by its density, which is simply the ratio of its 

observed number of edges (E) to the maximum 

possible number of edges or 2E / (N(N - 1)) 

(Wasserman & Faust, 2009, p. 101). Although 

there is no definitive standard for characterizing 

a network as sparse, informally, the adjacency 

matrix of a sparse network consists primarily of 

zeros. Adopting this as our standard, this implies 

that a sparse network will have a density less 

than 0.5. For example, with N = 8 subsystems and 

E = 12 interfaces the hypothetical example in 

Figure 4 has a density of 0.428. As such, it is 

sparse, and, as expected, the Girvan-Newman 

community detection heuristic performs well, 

correctly identifying its two architectural 

communities. In sum, by using the Girvan-

Newman community detection heuristic in 

Algorithm 1, Dabkowski et al. (2014) implicitly 

assume real-world SV-3s are sparse, and this 

leads us to our second hypothesis: (H2) – The 

densities of real-world SV-3s are less than 0.5.  

As for community structure, recall that the 

hypothetical example in Figure 4 consists of two, 

well-defined communities, and Algorithm 1 

conforms to this structure. The questions are: 

“Does the community structure in the 

hypothetical example warrant this approach,” 

and “If so, do real-world SV-3s exhibit similar 

behavior?” To address these issues, we use 

Girvan and Newman’s well-known modularity 

metric, which ranges from its minimum of 0, 

when “the number of within-community edges is 

no better than random,” to its theoretical 

maximum of 1, indicating very strong community 

structure (Newman & Girvan, 2004, p. 7). In 

practice, however, Girvan and Newman note 

modularities above 0.7 are uncommon, and 

values greater than 0.3 suggest strong 

community structure (Newman & Girvan, 2004, 

p. 7). Adopting this standard, we used the 

edge.betweenness.community function from the 

statistical software R’s igraph package (Csardi & 

Nepusz, 2006) to calculate the modularity for the 

hypothetical example. With a value of 0.333, its 

modularity exceeds the 0.3 threshold, and 

Algorithm 1 rightly abides its strong community 

structure. Whether or not this also applies to real

-world SV-3s needs to be assessed, yielding our 

third hypothesis: (H3) – The modularities of real-

world SV-3s are greater than 0.3.  

Beyond validity related to input, the validity of 

Algorithm 1’s growth and connection 

mechanisms must also be assessed. Looking at 

the growth mechanism, Dabkowski et al. (2014) 

modeled an incoming subsystem’s number of 

interfaces (or degree) as a random variable with 

a PMF equal to the observed degree distribution 

of the current system. In fact, their approach 
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differs substantially from the growth step in the 

standard BA model, where a fixed versus random 

number of edges (m) are added each time a new 

node enters the network (Baraba si & Albert, 

1999). That said, when m is constant the total 

number of edges in a network of N nodes is fixed, 

reducing the flexibility of the standard BA model. 

For example, if a network starts as the smallest 

possible connected graph prior to the addition of 

new nodes, it will have m nodes and m - 1 edges. 

In this case, following the network’s eventual 

growth to N nodes, it will have  E = m(N - m) + (m 

- 1) = m(N - m + 1) - 1 total edges. For the 

hypothetical example in Figure 4, this is 

problematic. Specifically, if m = 1, once the SV-3 

grows to its final size of N = 8 subsystems it will 

have E = 7 interfaces. This is 5 too few; therefore 

m must be greater than 1. However, if m = 2, it 

will ultimately have E = 13 interfaces, which is 1 

too many.  

Accordingly, holding an incoming subsystem’s 

number of interfaces constant is overly 

restrictive, and using the observed degree 

distribution in Algorithm 1 seems reasonable. As 

Dorogovtsev and Mendes (2003) note: 

How can we account for the 

influence of the network on the 

properties on a newborn vertex? 

This, our baby, has only one 

characteristic, namely the number 

of its connections. Then, let this 

number not be fixed by God but be 

distributed with some distribution 

function which depends on the 

current state of the network . . . let 

the degree distribution of the 

newborn vertex be dependent on 

the degree distribution of the 

network (p. 42) . 

Nonetheless, as with the standard BA model, the 

validity of this approach must be assessed. 

Ultimately, we want a stochastic model capable of 

growing SV-3s with N subsystems and 

approximately E interfaces. More precisely, if the 

mean absolute percentage error (MAPE) in 

interfaces is no more than 20%, we feel the model 

is sufficient, and our fourth hypothesis is as 

follows: (H4) – Using the observed degree 

distribution of a real-world SV-3 to model its 

incoming subsystems’ number of interfaces 

grows SV-3s with a MAPE in interfaces less than 

or equal to 20%. 

Finally, for Dabkowski et al.’s (2014) connection 

mechanism, in Steps (5) and (8) of Algorithm 1 

they used linear preferential attachment to 

connect an incoming subsystem to subsystems 

already in the architecture. As such, if real-world 

SV-3s utilize linear preferential attachment, their 

connection mechanism is valid; otherwise, it is 

not. Unfortunately, proving the presence of linear 

preferential attachment in a network’s evolution 

requires longitudinal data or snapshots of its 

growth over time (Newman, 2001; Jeong, Ne da, & 

Baraba si, 2002), and such data is often 

unavailable.  

Nonetheless, even without longitudinal data, we 

can use a network’s degree distribution to 

examine whether linear preferential attachment 

played a role in its evolution, as networks grown 

via linear preferential attachment have a 

characteristic statistical marker. Specifically, the 

probability that a node has degree d, p(d), is 

proportional to d-ω where ω = 3 - p and p 

represents the fraction of edges that are directed 

(Baraba si & Albert, 1999). Moreover, while our 

earlier discussion demonstrated that m is not 

fixed and the standard BA model does not apply, 

this marker still holds. As Baraba si and Albert 

note in their landmark 1999 paper: “For most 

networks, the connectivity m of the newly added 

vertices is not constant. However, choosing m 

randomly will not change the exponent” (p. 512). 

In short, if real-world SV-3s have been grown via 

linear preferential attachment, ω should be 3. 

Formally known as a power law, this scale-free 

behavior typically presents itself in the heavy, 

right-hand tail of the network’s degree 

distribution, and following normalization, its 
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discrete distribution function is: 

 

where an approximate maximum likelihood 

estimator for ω is given by: 

 

 

and:  

dmin= the lower bound for the power 

law behavior (Clauset, Shalizi, & 

Newman, 2009).  

Using these facts, we formulate our fifth and final 

hypothesis as follows: (H5) – The observed 

degree distributions of real-world SV-3s follow a 

power-law with ὢ = 3. 

  

Results and Analysis of Hypothesis Testing 

In order to test the hypotheses identified in the 

previous section, we used the SV-3s from 24 

different defense programs. Consisting of 

weapons systems; combat and transportation 

vehicles; command, control, and communications 

suites; and intelligence, surveillance, and 

reconnaissance platforms, the programs vary 

considerably in both size and scope, providing a 

broad sample and facilitating generalization 

(AIMD, 2014). The results and analysis of this 

testing are given below. 

 

(H1) – Real-world SV-3s are one-mode, 

undirected, valued networks. 

As seen in the first several columns of Table 1, 

real-world SV-3s do not match Algorithm 1’s 

expected input; therefore, (H1) is refuted. First, 

with respect to mode, 6 of the 24 SV-3s only 

reflect the interfaces that exist between two 

different sets of subsystems (e.g., internal and 

external) [Endnote 1]. Known as two-mode 

networks (or bipartite graphs), these SV-3s do 

not comport with the standard BA model 

[Endnote 2]. Next, of the 18 remaining SV-3s, 4 

are asymmetric across their main diagonal or 

directed. While this does not agree with 

Algorithm 1’s expected input, the standard BA 

model is extensible to directed networks by using 

each node’s in-degree (di,in, the number of 

directional edges pointing to node i) when 

calculating attachment probabilities. Last, none of 

the 24 SV-3s are valued, let alone weighted 

according to interface complexity. Without 

interface complexities, the validity of using 

subsystem i’s observed interface complexity 

distribution to estimate future interface 

complexity cannot be assessed. In sum, although 

(H1) is refuted, 14 of the 24 real-world SV-3s are 

one-mode, undirected networks, and these will 

form the basis for our subsequent analysis.  

 

(H2) – The densities of real-world SV-3s are 

less than 0.5.  

Of the 14 one-mode, undirected SV-3s in Table 1, 

only one (i.e., System 6) has a density greater than 

0.5. Accordingly, in general, (H2) is affirmed. 

Moreover, the average and median density among 

these 14 SV-3s are 0.245 and 0.214, respectively, 

which compare favorably with the hypothetical 

example’s density of 0.428. As such, our sample 

suggests real-world SV-3s are sparse, and using 

the Girvan-Newman community detection 

heuristic in Algorithm 1 is appropriate.  

 

(H3) – The modularities of real-world SV-3s 

are greater than 0.3.  

While Table 1 provides definitive evidence for 

refuting (H1) and affirming (H2), the data for (H3) 

is less clear. In particular, 6 of the 14 one-mode, 

undirected SV-3s have modularities greater than 

0.3. Put another way, roughly 50% of the real-

world SV-3s in our sample have strong 

community structure worth exploiting, and 

Algorithm 1 accommodates this. On the other 

(2) 

(3) 
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hand, when an SV-3’s modularity is less than 0.3, 

the identified community structure may be 

spurious, and exploiting it in Algorithm 1 is not 

recommended. As such, a non-community version 

of the connection mechanism is needed, and 

Algorithm 1 should be modified accordingly.  

 

 

(H4) – Using the observed 

degree distribution of a real-

world SV-3 to model its 

incoming subsystems’ 

number of interfaces grows 

SV-3s with a MAPE in 

interfaces less than or equal 

to 20%. 

To test (H4), we simulated the 

growth of the 14 one-mode, 

undirected SV-3s in Table 1 

using Algorithm 1’s growth and 

connection mechanisms. In 

particular, at t = 0 we start with 

an SV-3 consisting of two 

subsystems connected by a 

single interface. Accordingly, 

the PMF for the first incoming 

subsystem’s number of 

interfaces is simply  

P(M = 1) = 1, and it generates 

one interface, which is attached 

to either of the two existing 

subsystems with equal 

probability. At t = 1, the SV-3 

consists of 3 subsystems, 

where two subsystems have 

one interface and one 

subsystem has two interfaces. 

As such, the PMF for the second 

incoming subsystem’s number 

of interfaces is  

P(M = 1) = 2/3 and P(M = 2) = 

1/3. Drawing a random variate 

from this PMF determines the number of 

interfaces the second incoming subsystem 

generates, and these interfaces are connected to 

the three existing subsystems using linear 

preferential attachment. At t = 3 the process 

repeats itself, and it continues until the SV-3 

consists of N subsystems, at which point the total 

number of interfaces is recorded. The results of 

this simulation for 1,000 trials at each value of N 

are given in Table 2. 

  Type Size   Community Structure 

System Modes Undirected? Valued? N E Density Communities Modularity 

1 2 – – – – – – – 

2 2 – – – – – – – 

3 1 Y N 19 26 0.152 4 0.365 

4 1 Y N 14 19 0.209 4 0.256 

5 1 Y N 21 46 0.219 2 0.072 

6 1 Y N 4 4 0.667 1 0 

7 1 Y N 15 16 0.152 3 0.498 

8 1,2 Y N 9 12 0.333 2 0.247 

9 2 – – – – – – – 

10 1 N N – – – – – 

11 1 Y N 24 19 0.069 8 0.611 

12 1 N N – – – – – 

13 1 N N – – – – – 

14 1 Y N 10 16 0.356 3 0.271 

15 1 Y N 28 23 0.061 8 0.749 

16 1 Y N 22 67 0.290 11 0.057 

17 1 Y N 19 18 0.105 6 0.532 

18 1 Y N 18 30 0.196 6 0.150 

19 1 N N – – – – – 

20 1,2 Y N 9 8 0.222 3 0.414 

21 2 – – – – – – – 

22 2 – – – – – – – 

23 2 – – – – – – – 

24 1,2 Y N 6 6 0.400 4 0.042 

Table 1. Summary of the type, density, and community structure of real-world SV-

3s. Bold entries highlight modularity values which indicate strong community 

structure. Systems with both one- and two-mode SV-3s are denoted by “1,2” in the 

“Modes” column. For these systems, values in the size and community structure 

panels correspond to the one-mode SV-3. 
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As Table 2 shows, (H4) is refuted. Specifically, 

with the exception of System 6, using the 

observed degree distribution generated too 

many interfaces on average, and this is 

reflected in the magnitude of the lower bounds 

of the 95% confidence intervals on the mean 

number of interfaces as well as the MAPEs. 

Furthermore, as highlighted by the system 

ranks according to density and MAPE, sparse 

SV-3s performed worse than dense SV-3s, with 

the MAPE reaching 485% for the least dense SV

-3 (System 15). Accordingly, the observed 

degree distribution is an inadequate model for 

an incoming subsystem’s number of interfaces, 

and an alternative growth mechanism is 

needed. 

 

(H5) – The observed degree distributions of 

real-world SV-3s follow a power-law with  

ὢ = 3 

As late as 2008, the preferred method for 

testing (H5) would have been to plot the 

histogram of the SV-3’s degrees on a log-log 

graph and subsequently perform least-squares 

regression to estimate ω. However, this method 

has several statistical shortcomings, and in 

2009 Clauset et al. formalized hypothesis tests 

for assessing power law behavior, along with 

procedures for estimating ω and dmin in 

Equation (3) [Endnote 3]. These procedures 

have been implemented in R’s igraph package 

via the power.law.fit function (Csardi & Nepusz, 

2006), and the results of this estimation for the 

14 one-mode, undirected SV-3s are given in 

Table 3. 

System 3 4 5 6 7 8 11 14 15 16 17 18 20 24 

N 19 14 21 4 15 9 24 10 28 22 19 18 9 6 

E 26 19 46 4 16 12 19 16 23 67 18 30 8 6 

Density 0.15 0.21 0.22 0.67 0.15 0.33 0.07 0.36 0.06 0.29 0.11 0.2 0.22 0.4 

Rank (by density) 10 8 7 1 10 4 13 3 14 5 12 9 6 2 

95% CI on μ(LB) 63 35 76 3 40 15 99 18 131 83 63 56 15 7 

95% CI on μ(UB) 65 37 79 3 41 15 103 19 137 86 65 58 15 7 

MAPE 146 92 74 17 153 35 431 29 485 40 255 93 86 26 

Rank (by MAPE) 10 8 6 1 11 4 13 3 14 5 12 9 7 2 

Table 2. Results of growing SV-3s when the observed degree distribution is used to generate an incoming subsystem’s 

number of interfaces. The 95% confidence intervals (CIs) reflect a plausible range of values for the mean number of 

interfaces (μ), where LB and UB denote the lower and upper bounds, respectively. 

Power law distribution fitting H0 : Data follow a power law distribution with the fitted parameters 

  H1 : Data do not follow a power law distribution with the fitted parameters 

System 3 4 5 6 7 8 11 14 15 16 17 18 20 24 

ὢ 3.06 2.27 2.78 ∞ 2.8 2.69 2.52 2.26 2.33 2.57 2.06 2.22 2.01 ∞ 

 d̂min 3 2 3 – 2 2 1 2 1 4 1 2 1 – 

p-value 0.99 0.99 0.58 – 0.99 0.99 1 0.67 1 0.5 0.28 0.99 0.83 – 

95% CI on ὢ (LB) 2.13 1.68 2.09 – 1.95 1.86 1.98 1.67 1.9 2 1.66 1.72 1.51 – 

95% CI on ὢ (UB) 5.11 3.64 4.09 – 4.82 4.76 3.46 3.62 3.05 3.57 2.77 3.16 3.19 – 

Ntotal 19 14 21 4 15 9 24 10 28 22 19 18 9 6 

Nfit 10 9 15 – 9 8 24 9 28 18 19 14 9 – 

Table 3. Results of fitting discrete power law distributions to the observed degree distributions of real-world SV-3s. 

Systems 6 and 24 do not have sufficient data to estimate ω. 
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Based on these results, the power law distribution 

is a statistically plausible model for the observed 

degree distributions of the SV-3s. After all, among 

the 12 cases with sufficient data to estimate ω and 

dmin, the smallest p-value is 0.28 (System 17), 

suggesting we unanimously fail to reject the null 

hypothesis that the data follow a power law 

distribution with the fitted parameters. Moreover, 

in all but one case (System 17), the 95% 

confidence intervals for ω include 3, suggesting 

there is statistical support for the presence of 

linear preferential attachment in the SV-3s’ 

evolution. Nevertheless, the high p-values for 

several of the systems are concerning, and they 

are likely due to the small sizes of the data sets 

used to fit the parameters (Nfit) [Endnote 4]. As 

Clauset et al. (2009) caution, “It is possible for 

small values of n that the empirical distribution 

will follow a power law closely, and hence that the 

p-value will be large, even when the power law is 

the wrong model for the data” (p. 678).  

With this in mind, we can test whether the data 

follows another heavy-tailed distribution more 

closely, and the discrete exponential distribution 

is an appropriate choice, as it represents the 

limiting distribution of the subsystems’ degrees 

when the pi are uniform and preferential 

attachment is not present (Baraba si, Albert, & 

Jeong, 1999). Accordingly, we performed a 

likelihood ratio test to determine whether a 

discrete power law or a discrete exponential 

distribution better fits the data (Clauset et al., 

2009). Implemented in R’s poweRlaw package 

(Gillespie, 2015), the results of this test are 

summarized in Table 4, where p-values less than 

0.05 indicate statistically significant results and, if 

significant, a positive (negative) test statistic 

implies the power law (exponential) distribution 

is a better fit.  

As seen in Table 4, only System 5 produced a 

statistically significant result, with the power law 

being favored over the exponential distribution. 

Additionally, Systems 14 and 20 were nearly 

significant, and, in both cases, the exponential 

distribution better fits the data. In sum, our 

likelihood ratio testing cannot refute the presence 

of linear preferential attachment in real-world SV-

3s; however, due to small n, our conclusion lacks 

statistical power. Accordingly, (H5) is affirmed, 

but further investigation is warranted.  

 

Accommodating Reality – A Modified, Data-

Driven Approach  

As the hypothesis testing in the previous section 

demonstrated, Algorithm 1 cannot accommodate 

all real-world SV-3s in its current form, and it 

must be modified. In particular, evaluating (H1) 

identified that SV-3s may be two-mode and 

directed, requiring different growth and 

connection mechanisms. Moreover, none of the 24 

real-world SV-3s we examined are valued; 

therefore, the validity of using the observed 

interface complexity distribution to estimate 

future interface complexity cannot be assessed. 

Although these shortcomings must be addressed, 

they are beyond the scope of this work, and we 

restricted our focus to the 14 one-mode, 

undirected SV-3s.  

For these SV-3s, evaluating (H2) confirmed the 

appropriateness of using the Girvan-Newman 

community detection heuristic, and analyzing 

Power law versus exponential H0 : Both distributions are equally far from the true distribution 

  H1 : One of the test distributions is closer to the true distribution 

System 3 4 5 6 7 8 11 14 15 16 17 18 20 24 

p-value 0.33 0.56 0.01 – 0.86 0.28 0.31 0.06 0.65 0.24 0.21 0.53 0.08 – 

Test Statistic -0.9 -0.6 2.8 – -0.2 -1.1 1 -1.9 -0.5 -1.2 -1.2 -0.6 -1.8 – 

Table 4. Likelihood ratio test results reflecting whether a discrete power law or a discrete exponential distribution 

better fits the observed degree distributions of real-world SV-3s. Bold entries indicate statistically significant results. 
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(H3) indicated strong community structure for 6 

of the 14 SV-3s. To accommodate SV-3s without 

strong community structure, Algorithm 1 needs 

an additional, non-community connection 

mechanism. Furthermore, investigating (H4) 

clearly indicated that using the observed degree 

distribution to model an incoming subsystem’s 

number of interfaces generates too many 

interfaces on average, and an alternative growth 

mechanism is needed. Finally, although 

examining (H5) provided statistical support for 

the presence of linear preferential attachment in 

the SV-3s’ evolution, the results lack statistical 

power.  

While these shortcomings may seem damning, we 

see them as an opportunity to develop a modified, 

data-driven approach. Specifically, real-world SV-

3s hold the key to finding models of evolutionary 

architectural growth, starting with the PMF for an 

incoming subsystem’s number of interfaces. 

 

Establishing Feasible PMFs for an Incoming 

Subsystem’s Number of Interfaces (P(M = m)) 

Consider System 3 from Table 1. With 19 

subsystems and 26 interfaces, if m is modeled by 

the observed degree distribution, Table 2 

indicates that the resulting SV-3s will have 38 too 

many interfaces on average. Therefore, our first 

objective is to find a distribution for m (P(M = m)) 

that grows SV-3s of size (N = 19, E = 26).  

To do this, we return to System 3 and make the 

following observation. If the SV-3 starts as a 

single unconnected subsystem and each incoming 

subsystem must generate at least one interface, 

the remaining N - 1 = 18 subsystems must 

produce exactly E = 26 interfaces, and the 

following relation holds: 

 

 

Where E(i)  represents the number of interfaces 

the ith oldest subsystem generates and   

1 ≤ E(i) ≤ min{i, E - (N - 2)}[Endnote 5]. For 

example, consider Figure 5, which gives three 

possible solutions to Equation (4) for System 3.  

Examining the first solution, we note that  

1 ≤ E(i) ≤ min{i, 9} for each subsystem and  
 

           ; it is feasible. However, given the 

distribution of the E(i)’s, the first solution has 

multiple feasible permutations. To show this 

directly, note that there are 12 subsystems with 1 

interface, and one of these subsystems must fill 

the first position (E(i) = 1). Following this 

assignment, 16 subsystems with less than 3 

interfaces are available to fill the second and 

third positions, which yields four cases, namely:  

(a) {E(1) = 1, E(2) = 1, E(3) = 1},  

(b) {E(1) = 1, E(2) = 1, E(3) = 2},  

(c) {E(1) = 1, E(2) = 2, E(3) = 1}, and 

(d) {E(1) = 1, E(2) = 2, E(3) = 2}.  

At this point, the single subsystem with four 

interfaces becomes available for assignment, and 

any of the 15 remaining subsystems can fill 

positions 4 through 18, where the distribution of 

the remaining Ei’s is dependent on the case. In 

particular, if we denote the number of remaining 

subsystems with 1, 2, or 4 interfaces as n1, n2, and 

n4, respectively, we note:  

(a) {n1 = 9, n2 = 5, n4 = 1},  

(b) {n1 = 10, n2 = 4, n4 = 1},   

(c) {n1 = 10, n2 = 4, n4 = 1}, and 

(d) {n1 = 11, n2 = 4, n4 = 1}.  

Figure 5. Three possible solutions to Equation (4). 

(4) 
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Armed with this information and applying the 

well-known formula for the permutation of 

indistinguishable objects with repetition, the 

number of ways to feasibly permute the first 

solution in Figure 5 is: 

Of course, similar logic applies to the second and 

third solutions in Figure 5, as well as every other 

non-permutationally equivalent solution. Simply 

put, the total number of feasible solutions is large.  

Fortunately, while the sequencing of the 

subsystems affects feasibility and must be 

checked, it does not affect the distribution of m. 

Specifically, each of the 65,520 feasible 

permutations of the first solution has 12 

subsystems with 1 interface, 5 subsystems with 2 

interfaces, and 1 subsystem with 4 interfaces, 

implying P(M = m) = {0.667, m = 1; 0.278, m = 2; 

0.55, m = 4}. Recalling our objective is to find a 

PMF for m that consistently grows SV-3s of size 

(N, E), we do not need to find every feasible 

sequence for m. In the context of Equation (4), we 

need to find the unordered sets of E(i),  

{E1, E2, ∙ ∙ ∙, EN-1} , such that 

where 1 ≤ Ei  for all i.  

In fact, this is equivalent to solving a restricted 

partition problem from number theory, where E 

(a positive integer) is decomposed into the sum 

of exactly N - 1  positive integers. Using the 

generating function approach (Gupta, 1970), the 

total number of restricted partitions, p(E, N - 1), 

is equivalent to the coefficient of the xE  term after 

expanding the polynomial: 

 

 

where each of the infinite order polynomials of 

the form (1 + xr + x2r +  ∙ ∙ ∙) can be truncated just 

prior to its order exceeding N - 1. Applying this 

result to System 3 yields:  

Therefore, p(26, 18) = 22, and these 22 restricted 

partitions (r) capture the possible PMFs for m, 

which can be enumerated using the 

restrictedparts function from R’s partitions 

package (Hankin, 2006). Calling this function for 

E = 26 and N - 1 = 18 returns the result in Figure 

6.  

As Figure 6 shows, although each of the 22 

restricted partitions sum to 26 and have a 

minimum value of 1, the maximum value ranges 

from a high of 9 to a low of 2. Accordingly, while 

Figure 6. Restricted partitions of System 3’s interfaces.  

(5) 

(6) 
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these PMFs for m are all feasible, they are 

different, and some may better replicate the 

degree distribution of System 3 when we use 

them to grow SV-3s of size (N = 19, E = 26) . 

 

Parameterizing the Strength of Preferential 

Attachment (β) 

Armed with feasible PMFs for m, our next task is 

to determine the role linear preferential 

attachment plays in the formation of System 3’s 

SV-3. Looking at Table 3, we failed to reject the 

null hypothesis that System 3’s degree 

distribution followed a discrete power law 

distribution with ω = 3, implying linear 

preferential attachment is present. However, as 

seen in Table 4, subsequent likelihood ratio 

testing failed to reject that a discrete exponential 

distribution fits the data equally well, suggesting 

linear preferential attachment might be absent.  

These two cases represent poles along a 

continuum, and another possibility is that 

preferential attachment is present but it is not 

linear. For example, the probability of an 

incoming subsystem attaching to an existing 

subsystem i could be given by   

where 0 < β < 1 (Baraba si, 2015). In this case, the 

incoming subsystem is more likely to connect 

with highly connected subsystems but the 

attachment probability is a sublinear function of 

degree – it is more muted. Moreover, even if 

likelihood ratio testing concludes that a discrete 

power law distribution fits the data better, it does 

not address the possibility that the preferential 

attachment could be a superlinear function of 

degree (β < 1 ). As with the feasible PMFs for m, 

settling on a best value for β necessitates that we 

grow SV-3s of size (N = 19, E = 26) for various 

values of β and measure how close their degree 

distributions are to System 3’s. The question is:  

 

 

 

“How should the difference between the degree 

distributions of two SV-3s of size (N, E) be 

measured?” 

 

Assessing the Difference Between Degree 

Distributions (z*) 

Although there are several well-known methods 

for calculating the difference between probability 

distributions (e.g., the two-sample Kolmogorov-

Smirnov test statistic (Darling, 1957) and the 1st 

Wasserstein metric or Earth Mover’s Distance 

(Rubner, Tomasi, & Guibas, 1998)), the SV-3s’ 

equivalent size invites an intuitive approach 

based on their observed degrees. Drawing on a 

frequently used example from combinatorial 

optimization, imagine we have N skiers with 

heights (hi) and N sets of skis with lengths (lj), 

and we want to match the skis to the skiers such 

that the sum of the absolute pairwise differences 

between the heights of the skiers and the lengths 

of the skis (z = Σ|hi - lj|)  is minimized. As simple 

as it sounds, a globally optimal solution to this 

problem can be obtained by ordering the skis/

skiers by length/height and assigning skis to 

skiers on a basis of their relative size  

(i.e., z* = Σ|h(k) - l(k)|, where (k) denotes the kth 

height/length of smallest skier/ski) (Lawler, 

1976, p. 208).  

By analogy, if we consider the N subsystems of SV

-3s A and B as the skis and skiers, respectively, 

and match their subsystems on a basis of relative 

degree, the sum of the absolute pairwise 

differences between their degrees (z = Σ|di - dj|) is 

minimized. If the degrees of the two SV-3s are 

identical, their degree distributions are the same, 

and the value of the minimum (z*) equals zero. 

On the other hand, as the degrees become 

dissimilar, their degree distributions begin to 

diverge, and z* increases. Consequently, z* 

provides an intuitive measure of the difference 

between the degree distributions. With this in 

mind, when growing SV-3s of size (N, E) , with the 

goal of replicating the degree distribution of a 

real-world SV-3, smaller values of z* are 

preferred. 
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Simulating Growth to Identify Optimal  

P(M = m) and Values for β  

At this point, we have generated a set of feasible 

PMFs for an incoming subsystem’s number of 

interfaces {P(M = m)} , and we have 

parameterized the attachment probabilities to 

vary the strength of preferential attachment (β). 

Moreover, we have developed an intuitive 

measure z* to assess the difference between the 

degree distributions of two SV-3s of size (N, E). 

Ultimately, for a real-world SV-3, we would like to 

find the member(s) of {P(M = m)} and value(s) of 

β that minimize z*. Given the stochastic nature of 

the connection mechanism, as well as the need to 

feasibly permute the restricted partitions 

indicated by {P(M = m)}, z* is a random variable 

(Z*). Accordingly, we designed an experiment to 

simulate the growth of SV-3s of size (N, E) for all 

restricted partitions and various values of β to 

identify which, if any, combination(s) of the 

parameters produces the smallest population 

mean for Z* (μz*). The pseudocode for this 

procedure is as follows: 

(1) Calculate, sort, and store the degrees of a 

real-world SV-3 of size (N, E)   

(2) Generate and store the restricted partitions 

for SV-3s of size (N - 1, E)  , 

(3) Determine a representative set of values for 

β (i.e., β = {0, 0.1, 0.2, ∙ ∙ ∙ , 1}), and 

(4) For each restricted partition (r) and value of 

β, for a specified, suitably large number of 

iterations, on each iteration l . . .  

Figure 7. Sample means of the minimum absolute pairwise differences between the degrees of System 3’s SV-3 and the degrees 

of 1,000 simulated SV-3s for each (r, β) pair. Yellow shading denotes the five smallest sample means, and blue shading reflects 

the relative magnitude of the sample means across the 242 (r, β) pairs, where darker shades reflect larger means.  
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(a) Randomly permute the restricted 

partition until feasible  

(E(i) ≤ i for i ∈ {1, 2, ∙ ∙ ∙ , N - 1}), 

(b) Initialize the simulated SV-3 as a single 

subsystem, 

(c) Sequentially add N - 1 subsystems to the 

simulated SV-3, where the ith  incoming 

subsystem generates E(i)  interfaces and 

attaches to existing subsystem k with 

probability pk ∝ dkβ , 

(d) Calculate and sort the degrees of the 

simulated SV-3, and 

(e) Sum the absolute pairwise differences 

between the sorted degrees of the 

simulated SV-3 and the real-world SV-3; 

store the result as z*r,β,l . 

Increasing β from 0 to 1 in increments of 0.1 and 

running 1,000 iterations for each (r, β) pair 

produce 242,000 realizations of Z* for System 3. 

The sample means of this experiment are 

summarized in Figure 7.  

As seen in Figure 7, the sample means range from 

a minimum of 7.046 for the (r = 5, β = 0.2) pair to 

a maximum of 13.21 for the (r = 1, β = 0.1) pair. 

Additionally, the poorest performing (r, β) pairs 

seem to be concentrated in r = {1, 2, 21, 22} and  

β = {0.9, 1}. Based on these observations, 

parameter settings affect the fit, and this is 

highlighted in Figure 8, where the sample means 

have been converted to ascending ranks by row 

and column and shaded accordingly.  

In particular, on the left side of Figure 8 it 

appears that β = {0.2, 0.3, 0.4, 0.5} produce SV-3s 

with degrees that more closely match the degrees 

of System 3’s SV-3, immaterial of r. Similarly, 

regardless of the value of β, on the right side of 

Figure 8 it seems that r = {5, 9, 15} perform 

relatively well. Based on these observations, we 

conclude that the underlying population means 

depend on the restricted partition and the value 

of β and that a best fitting (or better fitting) (r, β) 

pair(s) may exist. 

To test this conclusion formally, consider (a) we 

have two factors (the restricted partitions and 

Figure 8. Ascending ranks of the sample means from Figure 7 by restricted partition number (left side) and β (right side). 

Yellow shading denotes the seemingly best performing levels of β and r by rank, and blue shading reflects the relative 

magnitude of the ranks across the rows (left side) and columns (right side), where darker shades reflect higher ranks. 
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the set of βs); (b) we are evaluating each factor at 

every level of interest; (c) we are interested in 

which, if any, combination(s) of the factors 

produce the minimum mean; and (d) the number 

of iterations at each combination of the factors is 

the same. Accordingly, our simulation experiment 

is a balanced, fixed effects two-factor factorial 

design, and the corresponding effects model for 

our simulation experiment is given by: 

where μ is the overall mean effect; τr is the effect 

of the rth restricted partition;γβ is the effect of β at 

its indicated level; (τγ)r,β  is the effect of the 

interaction between τr and γβ; and ∈r,β,i is a 

random error component (Montgomery, 2005, p. 

165). Furthermore, if we assume the ∈r,β,l are 

independently and normally distributed with 

mean 0 and variance σ2 for each (r, β) pair, we 

can use two-way analysis of variance (ANOVA) to 

perform an omnibus F test of the following 

hypotheses (Montgomery, 2005, p. 166): 

 

 

 

 

 

   

Unfortunately, the Z*r,β,l constitute a finite set of 

positive integers; therefore, the ∈r,β,l will not be 

normally distributed. Nonetheless, with respect 

to the Type I error rate, the F test is robust 

against violations of the normality assumption 

(Donaldson, 1968), even when the dependent 

variable assumes a very small number of discrete 

values (Bevan, Denton, & Myers, 1974). 

Additionally, although the F test assumes equality 

of variance in the ∈r,β,l, when this assumption is 

violated in balanced designs numerous studies 

have shown that the actual probability of 

committing a Type I error closely matches the 

nominal level of significance (e.g., Glass, Peckham, 

& Sanders, 1972). That said, these studies 

typically employ experimentation versus 

analytical derivation, and generalizing their 

conclusions to our specific situation seems 

questionable. With this in mind, we can alleviate 

any issues by halving the nominal level of 

significance (i.e., from α = 0.05 to α = 0.025), as 

Keppel and Wickens (2004) note this is “the 

fastest and simplest way to eliminate concerns 

about heterogeneity” (p. 152). Using this 

approach, we performed a two-way ANOVA on 

the output of our simulation experiment, and the 

results are summarized in Table 5.  

As seen in Table 5, both of the main effects and 

the interaction effect are significant at α = 0.025, 

and we reject the null hypotheses captured in 

Equations (8), (9), and (10) in favor of their 

alternatives [Endnote 6]. Additionally, given the 

significant interaction effect, the focus of our post

-hoc testing is on the individual cell means in 

Figure 7 versus the row or column means.  

With this in mind, we can treat each of the 242 (r, 

β) pairs as separate levels of a single factor, 

thereby reducing our two-way ANOVA problem 

to a one-way problem. Moreover, as we are 

interested in whether there is an (r, β) pair with 

the smallest population mean, Hsu’s multiple 

comparisons with the best (MCB) procedure 

(Hsu, 1984) is an appropriate post-hoc test. In 

particular, if we denote the population mean of 

the ith (r, β) pair as μi , Hsu’s MCB constructs 

simultaneous, two-sided confidence intervals for 

           such that the family

(7) 

(8) 

(9) 

(10) 

Source of 
Variation 

Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Square 

F0 p-value 

r 243083 21 11575 1607.38 0 

β 77610 10 7761 1077.71 0 

Interaction 9043 210 43 5.98 0 

Error 1740994 241758 7     

Table 5. Results of two-way ANOVA. 
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-wise error rate (FWER) is controlled at a 

specified level (typically 0.05). If a confidence 

interval contains 0, then the population means of 

the corresponding (r, β) pairs are deemed 

equivalent and optimal. Otherwise, a statistically 

significant difference exists, and the sign of the 

confidence interval’s bounds determines which 

(r, β) pair is best. With this in mind, we set the 

FWER at 0.025 to account for the known 

heterogeneity, and we ran Hsu’s MCB in the 

statistical software Minitab (2015) [Endnote 7]. 

The results of this post-hoc testing are given 

Figure 9.  

As Figure 9 indicates, although the (r = 5, β = 

0.02)pair has the smallest sample mean, Hsu’s 

MCB suggests that 23 additional (r, β) pairs are 

also optimal. Interestingly, the optimal values of β 

range from 0 to 0.6, with the majority falling on 

0.2 and 0.3. This suggests that the preferential 

attachment mechanism is sublinear, and this fits 

with our previous likelihood ratio testing (see 

Table 4). Specifically, although we failed to reject 

the null hypothesis that the discrete power law 

and exponential distributions are equally far 

from System 3’s true degree distribution, the test 

statistic is slightly negative. As such, the evidence 

(albeit not statistically significant) favors the 

exponential distribution, and it hints that the 

preferential attachment mechanism is more 

uniform than linear. Nonetheless, in the absence 

of additional evidence, the optimal P(M = m) and 

values for β in Table 6 constitute a set of equally 

compelling conditions for generating an incoming 

subsystem’s interfaces and preferentially 

attaching them to System 3. 

Figure 9. Results of Hsu’s MCB with FWER 0.025, where the rows and columns of Figure 7 have been permuted by 

descending sample means. Yellow shading denotes the (r, β) pair with the smallest (optimal) sample / population mean 

(μr=5,β=0.2); green shading indicates additional (r, β) pairs with population means equal to (μr=5,β=0.2); and blue shading 

reflects the relative magnitude of the sample means across the remaining, suboptimal (r, β) pairs, where darker shades 

reflect larger means. 
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Incorporating Findings into a Modified, Data-

Driven Approach  

As seen above, using linear preferential 

attachment to connect an incoming subsystem to 

System 3’s existing architecture is ill-advised. 

Moreover, as seen in Table 7, ANOVA and Hsu’s 

MCB analysis of Systems 4, 6, 7, 8, 11, 14, 15, 17, 

18, 20, and 24 reinforce the appropriateness and 

importance of using a data-driven approach.  

In particular, while Brown-Forsythe testing found 

statistically significant heterogeneity in each 

system’s data except System 24, the maximum to 

minimum variance ratios were less than 4 to 1, 

allowing us to safely proceed with ANOVA using 

half the nominal level of significance. As with 

System 3, ANOVA identified significant main 

effects in every system expect System 24, and for 

systems with multiple restricted partitions, the 

interaction effect was also significant. Subsequent 

Hsu’s MCB analysis for the ten systems with 

significant effects revealed optimal β ranging 

from 0 to 1, with some systems favoring uniform 

attachment (i.e., Systems 14, 15, and 17) and 

others leaning towards linear attachment (i.e., 

Systems 4, 6, and 11). Additionally, with the 

exception of System 15, every system had 

multiple optimal (r, β) pairs, yet the number of 

optimal pairs was a fraction of the total number 

of pairs, especially for systems with multiple 

restricted partitions.  

Simply put, real-world SV-3s suggest a one-size-

fits-all approach is overly simplistic, and this also 

applies to the statistical methods we employed. 

For example, Systems 5 and 16 are not 

represented in Table 7, and this is a deliberate 

omission. Specifically, Systems 5 and 16 have 

2,417 and 98,222 restricted partitions, 

respectively, and, assuming a significant 

interaction effect and with 11 levels of β, this 

implies the simultaneous testing of 26,587 and 

1,080,442 hypotheses via Hsu’s MCB. This is well 

over 20 times the number of hypotheses tested in 

the next closest system in Table 7, and it falls into 

the domain of large-scale simultaneous inference, 

where minor deviations from the theoretical null 

hypothesis can substantially affect the results 

(Efron, 2012). In short, more advanced methods 

are necessary to analyze these systems. 

Beyond statistical methods, our approach is 

limited to simultaneously finding PMFs for an 

incoming subsystem’s number of interfaces and 

estimating the strength of preferential 

attachment. It does not address architectural 

communities. For example, during the growth of 

System 3 using the (r = 5, β = 0.02) pair, we 

applied the Girvan-Newman community 

detection heuristic to each of the 1,000 simulated 

SV-3s, producing the histogram and kernel 

density plot seen in Figure 10.  

 

r 

Optimal P(M = m) Optimal β  

m β 

1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 

4 0.889   0.056  0.056 1 1 1 1 1    

5 0.889    0.111   1 1 1 1 1 1   

7 0.833 0.056 0.056   0.056   1      

8 0.833 0.056  0.056 0.056     1 1     

9 0.833  0.111  0.056   1 1 1 1 1 1   

15 0.778   0.222             1 1 1 1 

Table 6. Optimal P(M = m) and values for β. The restricted partitions (r) listed in the leftmost column appear at least 

once in an optimal (r, β) pair (i.e., the corresponding rows of yellow or green-shaded cells in Figure 9), and these have 

been transformed into their corresponding PMFs in the panel titled “Optimal P(M = m).” Similarly, in the panel titled 

“Optimal β,” 1s indicate that the corresponding values of β are part of an associated optimal (r, β) pair (i.e., the 

corresponding columns of yellow or green-shaded cells in Figure 9). 
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Based on Figure 10 and recalling Table 1, these 

results are encouraging. After all, System 3’s SV-3 

displayed strong community structure with four 

communities and a modularity of 0.365. In Figure 

10, the plurality of the 1,000 simulated SV-3’s 

contained four communities, and, when this 

occurred, the mean modularity was 0.361 – a 

difference of just 1%. When we consider that our 

simulation does not control for community 

structure, this miniscule difference in modularity 

is remarkable. Nonetheless, a majority of the 

1,000 simulated SV-3s did not have four 

communities; therefore, we cannot claim our 

growth mechanism reliably replicates System 3’s 

community structure. 

With this in mind, we see the PMF for an 

incoming subsystem’s number of interfaces as a 

system-level property. Thus, unlike Algorithm 1, 

we no longer recommend calculating separate 

PMFs for an incoming subsystem’s number of 

Preprocessing 
ANOVA Source of Variation  

p-value (α = 0.025) 
Hsu’s MCB Analysis 

(FWER = 0.025) 

System # 

# of 
restricted 
partitions 

# of 
feasible  

(r, β) pairs 

Brown-
Forsythe  
p-value 

Max to 
Min 

Variance 
Ratio r β Interaction 

# of 
optimal  

(r, β) pairs r β 

4 11 121 0 2.2 0 0 0 6 1 {0.5,…,1} 

6 1 11 0 1.89 NA 0 NA 5 1 {0.6,…,1} 

7 2 22 0 2.08 0 0 0.002 6 2 {0,…,0.5} 

8 5 55 0 1.47 0 0 0 5 5 {0,…,0.4} 

11 1 11 0 1.27 NA 0 NA 2 1 {0.9, 1} 

14 15 165 0 2.45 0 0 0 10 7 {0, 0.1, 0.2} 

            10 {0.2} 

            12 {0,…,0.3} 

                  14 {0} 

15 1 11 0 1.44 NA 0 NA 1 1 {0} 

17 1 11 0 1.61 NA 0 NA 3 1 {0, 0.1, 0.2} 

18 101 1111 0 3.62 0 0 0 31 5 {0.3,…,0.8} 

            6 {0.3, 0.5} 

            10 {0.5,…,0.8} 

            11 {0.4, 0.5, 0.7} 

            14 {0.7} 

            23 {0.6, 0.7, 0.8} 

            40 {0.6, 0.7, 0.8} 

            41 {0.7} 

            58 {0.6,…,0.9} 

            72 {0.7, 0.8, 0.9} 

                  95 {1} 

20 1 11 0 1.72 NA 0 NA 3 1 {0, 0.1, 0.2} 

24 1 11 0.8716 1.15 NA 0.25 NA NA NA NA 

Table 7. ANOVA and Hsu’s MCB analysis of remaining one-mode, undirected SV-3s. Systems with a single restricted 

partition only have effects due to β; thus, their interaction effects are undefined. 
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intra and intercommunity interfaces, and we 

adopt a different approach. Specifically, if an 

incoming subsystem generates m interfaces and it 

is subsequently assigned to community k, we can 

view the intracommunity designation of the m 

interfaces as a sequence of m Bernoulli trials, 

where the probability of success (p) is given by:  

When viewed in this way, an incoming 

subsystem’s number of intracommunity 

interfaces, Mintra, is simply a Binomial (m, p) 

random variable. Of course, it is possible that 

Mintra could generate a realization (mintra) that 

exceeds the size of community k (Nk). 

Accordingly, we can set the number of intra and 

intercommunity interfaces as m’intra = min 

{mintra,Nk} and minter = m – m’ respectively.  

 

Using this approach and in light of our previous 

findings, we recommend the following, modified 

version of Algorithm 1:  

Algorithm 2 

For a specified, suitably large number of 

iterations . . .  

Preprocessing  

(1) Initialize the system as the current system, 

(2) Build an optimal set of {P(M = m), β} pairs, 

(3) Use Girvan-Newman to identify 

architectural communities and calculate 

modularity,  

Growth 

(4) Randomly select a member from the 

optimal set of {P(M = m), β} pairs,  

(5) Generate a realization for the incoming 

subsystem’s (X’s) number of interfaces 

using P(M = m); if the modularity suggests 

strong community structure, use 

Connection Option A; otherwise, use 

Connection Option B,  

 

Figure 10. Histogram and kernel density plot reflecting the community structure of System 3’s simulated growth  

using the r=5,β=0.02 pair. 
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Connection Option A 

(6a) Randomly assign X to community k, 

(6b) Model Mintra as a Binomial (m, p) 

random variable; generate a realization 

for Mintra ; and set the number of intra 

and intercommunity interfaces as m’intra 

= min{mintra, Nk} and m’inter = m – {m’intra} 

respectively, 

(6c) Attach X to m’intra subsystems inside 

community k and minter subsystems 

outside community k using attachment 

probabilities 

(6d) For each intracommunity interface 

established in (6c), assign complexity 

(wiX,intra), 

(6e) For each intercommunity interface 

established in (6c), assign complexity 

(wiX,inter), 

Connection Option B 

(6a) Attach X to m subsystems using 

attachment probabilities,  

 

(6b) For each interface established in 

(6a), assign complexity (wiX), 

Cost Estimation 

(7) Estimate the cost for the augmented 

system using COSYSMO (PMNS*), 

(8) Calculate the additional cost of 

adding subsystem X (PMNS* − PMNS), and 

(9) Store results and return to (4). 

 

Limitations and Directions for Future 

Research  

Although Algorithm 2 addresses several of 

Algorithm 1’s shortcomings, it still has 

limitations. First, as indicated earlier, SV-3s are 

not currently weighted by interface complexity. 

Thus, the validity of using the observed interface 

complexity distribution to estimate future 

interface complexity in Steps (6b), (6d), and (6e) 

above cannot be assessed, and further research is 

necessary. Second, while Algorithm 2 accepts one

-mode, undirected SV-3s as input, real-world SV-

3s can be two-mode or directed. With this in 

mind, methods that accommodate these SV-3 

types could yield additional, valuable information 

and should be explored. Third, Algorithm 2 

employs the Girvan-Newman community 

detection heuristic, and, despite its 

appropriateness, better performing heuristics 

exist (see Danon, Diaz-Guilera, Duch, & Arenas, 

2005). Nonetheless, any community detection 

method, regardless of its performance, may 

ignore other, more compelling marcostructures 

within the architecture. For example, subsystems 

may partition into a hierarchy of clusters, where 

subsystems in lower ranking clusters not only 

have a high density of interfaces with subsystems 

inside their clusters but also have a high density 

of interfaces with subsystems inside higher 

ranking clusters. To identify this and other 

hidden macrostructure, one can apply the 

network analysis technique known as 

blockmodeling, and this represents an intriguing 

way to generalize the current approach.  

Conclusions 

The requirement to submit DoD component-

approved DoDAF models prior to MS A has 

created interesting, new possibilities for the early 

life cycle cost estimation of MDAPs. In particular, 

Valerdi et al. (2015) demonstrate that the DoDAF 

models required Pre-MS A nearly span 

COSYSMO’s parameters, and Dabkowski et al. 

(2014) exploited this mapping in Algorithm 1 by 

estimating the cost of unanticipated, evolutionary 

architectural growth via the SV-3 and COSYSMO. 

Although this development could be seen as 

positive, any cost estimation procedure 

ultimately needs to be informed and validated by 

real-world data. Accordingly, in this paper, we 
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examined the assumptions underlying Algorithm 

1 using the SV-3s from 24 different defense 

programs. 

The results were mixed. Specifically, while the 

type, density, and community structure of real-

world SV-3s generally comport with Algorithm 1, 

modifications and extensions are necessary to 

accommodate two-mode or directed SV-3s. 

Moreover, using the observed degree distribution 

to model an incoming subsystem’s interfaces 

generates too many interfaces, and an alternative 

growth mechanism is needed. Finally, although 

there is statistical support for linear preferential 

attachment as a method of connecting 

subsystems, the SV-3s are small, and our 

statistical results inevitably lack power.  

With this in mind, we developed a modified, data-

driven approach that addresses several of these 

concerns. In particular, using number theory, 

network science, simulation, and statistical 

analysis, we were able to find optimal sets of 

PMFs and strengths of preferential attachment 

for 12 of the 14 one-mode, undirected SV-3s. 

Integrated into Algorithm 2, these optimal sets 

better represent a system’s evolutionary growth, 

and they improve the fidelity of the algorithm. 

Nonetheless, as noted earlier, our approach has 

several limitations, and these represent 

opportunities for future research.  

Aside from developing Algorithm 2, this paper 

also makes several tangential contributions to 

network science. First, to the best of our 

knowledge, this is the first attempt at 

simultaneously estimating a growing network’s 

incoming edge distribution and detecting the 

strength of preferential attachment. To date, 

these efforts have been disconnected, and linking 

them is not only natural but also necessary in 

light of their significant interaction effect. Second, 

assessing the presence of linear preferential 

attachment has traditionally been confined to 

large networks with longitudinal data. By 

modeling the set of feasible edge sequences via 

restricted partitions, we have provided 

researchers with a way to accommodate small 

networks with a single realization. Last, while 

other metrics exist, our use of the minimum sum 

of the absolute pairwise differences between the 

degrees of two identically-sized networks 

provides analysts with an intuitive measure of the 

similarity between their degree distributions. 

Taken together, these contributions highlight the 

benefits of applying network science to new 

domains, and they reinforce the value of viewing 

DoDAF models as computational objects.  
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Endnotes 

1. For those familiar with DoDAF, this seems to violate the generally prescribed structure of the SV-3. 

However, during DoDAF’s most recent, major revision, models shifted from a template-driven paradigm to a 

“fit for purpose” construct (DoD DCIO, 2010, p. 3). 

2. In practice, two-mode networks are often transformed into one-mode networks to facilitate analysis 

(Borgatti, 2009). For example, imagine a two-mode network X, where rows represent professors, columns 

denote institutional committees, and a 1 in cell (i, j) implies professor i is a member of committee j. Under 

the assumption that co-memberships in committees imply meaningful connections between professors, XXT  

yields a useful one-mode, valued network A, where rows and columns represent the professors and values 

provide the number of co-memberships for each pair of professors. Further binarizing A (such that cells 

greater than 1 are set to 1) yields a simple one-mode network. That said, using this approach for a two-mode 

SV-3 is ill-advised, as internal subsystems that interface with common external subsystem(s) do not 

necessarily interface with one another.  

3. While the details of estimating dmin are beyond the scope of this work, Clauset et al. (2009) note that d̂min is 

selected such that its value “makes the probability distributions of the measured data and the best-fit power-

law model as similar as possible above d̂min ” (p. 671). 

4. Data to the left of dmin is discarded prior to estimating ω; therefore, Nfit ≤ Ntotal . 

5. To ascertain the validity of the final inequality, note: (a) prior to the ith oldest subsystem entering the SV-3 

there are i subsystems in it, which implies the ith oldest subsystem can connect to at most i subsystems and 

(b) if Ei ≥ 1, Ej is maximized when Ei = 1 for all i ≠ j, which implies Ej = E - (N - 2).  

6. As stated previously, halving the nominal level of significance provides a reasonable hedge against 

unequal variance in the ∈r, β,l ; however, if the variances are equal, it is unnecessary. Accordingly, given the 

non-normality of the data, we evaluated the homogeneity of the residuals using the Brown-Forsythe test, 

and this returned a p-value of 0, firmly rejecting the variances of the ∈r, β,l  are equal. That said, unequal 

variances “typically cause Type I error rates to be slightly inflated . . . less than 0.02 at the 0.05 level . . . 

provided the ratio of the largest to the smallest variance is no more than 4 to 1, and n is at least 5" (Myers, 

Well, & Lorch, 2010, p. 191). In our case, the maximum and minimum variances are 14.02 (for (r = 22, β = 

0.9) and 4.35 (for (r = 5, β = 0.1)), yielding a ratio of 3.22. Accordingly, halving the nominal level of 

significance is appropriate.  

7. In fact, Hsu’s MCB is equivalent to Dunnett’s multiple comparisons with a control (MCC) procedure, where 

the control condition is selected as the factor setting (i.e., (r, β) pair) with the minimum observed mean 

(Lawson, 2010, p. 47). This has favorable implications for the robustness of Hsu’s MCB. Specifically, when 

the design is balanced, Dunnett’s MCC is known to be robust against non-normality and unequal variance, 

provided the maximum to minimum variance ratio is less than 4:1 (Toothaker, 1993). As Toothaker (1993) 

notes, you can use Dunnett’s MCC at α = 0.05 “with little consequence of unequal variances if the maximum 

true α you would tolerate would be 0.075” (p. 61). Thus, as with our earlier two-way ANOVA, we halved our 

nominal FWER to 0.025.  
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