
35 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment

Captain James Goljan

Jonathan D. Ritschel, Ph.D.

Scott Drylie, Ph.D.

Edward D. White, Ph.D.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the

United States Air Force, Department of Defense, or the United States Government. This material is declared a work

of the U.S. Government and is not subject to copyright protection in the United States.

Introduction

Defense organizations are moving towards agile

methodologies as a preferred approach to

software development. The desire to implement

agile methods is discussed in the 2019 Defense

Innovation Board (DIB) report, which identifies

speed and cycle time as the most important

metrics for software development (McQuade et

al., 2019). This movement toward agile

methodologies provides a conundrum for defense

cost analysts. These cost analysts are proficient in

developing software estimates based on

commonly accepted defense sizing metrics such

as Source Lines of Code (SLOC). But the agile

environment is unique. The agile mentality relies

on flexibility and working in small iterations.

Utilizing metrics like SLOC are often discouraged

as it constrains the team to a pre-conceived work

estimate and because it can incentivize the

contractor to develop inefficient code (Bhatt,

Tarey, & Patel, 2012). As a result, agile programs

require cost analysts to potentially adopt new

methods for proper cost estimation. For example,

agile programs may use techniques such as level-

of-effort estimates which incorporate the number

of team members and the expected duration of

time to work on a new requirement (Rosa,

Madachy, Clark, & Boehm, 2020). Due to the

DoD’s lack of experience and familiarity with

agile, the objective of this article is to investigate

the current state of agile software cost estimation

and provide recommendations for cost analysts.

The DoD has only recently implemented agile

software development, but the agile concept itself

dates back to 2001 with the publication of the

Agile Manifesto (Regan, Lapham, Wrubel, Beck, &

Bandor, 2014). Since its inception, agile practices

have become widely adopted throughout private

industry (Randall, 2014). The private sector’s 20

years of experience provides an opportunity to

uncover best practices for cost analysts in an

agile environment. To study this, we first conduct

an extensive literature review regarding the

recommended agile software cost estimating

models and techniques. The question then

becomes, “how do the recommended techniques

align with the methods defense cost analysts are

currently using?” To answer this, we collect data

from 11 agile Air Force software factories to

determine what practitioners actually do.

Comparison of the two results will provide

defense analysts with insight on differences

between current DoD practices and those

advocated by the published literature.

The Importance of Software in Military

Systems

Software plays a critical role in military systems.

The Defense Innovation Board (2019) states that

36 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

the DoD’s ability to adapt and respond to threats

is now determined by its capacity to rapidly

develop and deploy effective software (McQuade

et al., 2019). Therefore, speed, cycle time, and

value have become the most important metrics to

effectively manage software and subsequently

impact national defense readiness. Specifically,

program offices can affect speed and cycle time

by working closely with operators to deliver

capabilities based on the most urgent

requirements and by accounting for any new

requirements as they arise (Cohen, 2019). To

address this need for rapid deployment of

valuable software capabilities, agile software

factories such as Kessel Run were initiated. These

software factories were designed to move the

DoD away from traditional development

approaches such as Waterfall or Spiral and

towards the more modern agile approach.

The Agile Advantage

There is a debate regarding the merits of agile in

comparison to traditional software development

approaches. That discussion is outside the scope

of this article. Rather, the DoD’s shift to agile

(rightly or wrongly) necessitates a basic

understanding of the potential advantages of an

agile approach. What are those advantages? The

agile software development method has

advantages along three dimensions: 1) ability to

rapidly adjust to the immediate needs of the

customer 2) delivers viable products sooner and

3) provides more cost effective programs.

The first Agile advantage is that it provides an

environment for the customer to communicate

constructive feedback to the development team.

A distinct advantage of Agile stems from the

shorter cycle times to produce useable iterations

on a product for the customer. Agile teams

produce a Minimum Viable Product (MVP) which

has enough features of the end product to meet

the basic minimum functionality required by the

client (McQuade et al., 2019). The use of an MVP

allows agile teams to get immediate feedback

from the end user which developers can utilize to

decide the best course of action for future

development. Agile development differs from the

traditional Waterfall approach since constant

feedback loops decrease the risk of implementing

the wrong functionality for a product (Perkins &

Long, 2020).

The second Agile advantage is reduced cycle time.

Agile methodologies have already been adopted

and successfully proven to reduce the delivery

time of products in several federal government

organizations including the Integrated Strategic

Planning and Analysis Network (ISPAN),

Department of Veteran’s Affairs (VA), and

National Aeronautics and Space Administration

(NASA). For example, the ISPAN program

shortened the acquisition cycle duration between

initiation and Initial Operational Capability by 45

months (Pinto et al., 2016). Similarly, the VA

currently delivers capabilities an average of 4.2

months compared to 3-7 years prior to

implementing Agile practices (Pinto et al., 2016).

The 14th Annual State of Agile Report showed

that the number one reason why commercial

companies adopted Agile practices was because it

helped them “accelerate software

delivery” (Digital.AI, 2020).

The third advantage of Agile methods is that they

have the potential to make programs more cost

efficient. While this potential benefit of Agile is

debatable, there is evidence for the claim. In the

commercial sector, Digital.AI (2020) reports that

26% of companies adopt Agile due to its

increased cost savings (Digital.AI, 2020).

Similarly, Freeform Dynamics & CA Technologies

(2018) found that 29% of IT related companies

experienced a reduction to overall costs through

the incorporation of Agile methodologies

(Freeform Dynamics & CA Technologies, 2018).

Additionally, the Air Force’s first dedicated Agile

Software Factory, Kessel Run, has already

produced positive financial results. Kessel Run

developed a tanker planning tool for the Qatar

AOC utilizing state of the art software to

37 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

construct planning routes which immediately

saved a reported $214,000 per day in logistics

and fuel (Cohen, 2019).

These benefits have resulted in Agile

development becoming the leading methodology

that private industries use to create software. The

commercial successes suggest the DoD may

similarly benefit by employing Agile. However,

the nascent Agile implementation in defense

programs means research into the impacts to

defense cost estimation is scarce. The defense

cost analyst is left with uncertainty regarding the

best techniques and methods for an Agile

environment.

Data and Methods

To inform the discussion on how agile cost

estimation can be improved in the defense arena,

we compare the predominant published

literature on recommended agile cost estimation

methods to current practices in Air Force

Software Factories. This approach necessitated

two data sets be collected and analyzed. The first

data set comes from a robust literature search

that resulted in 1,814 published articles being

examined. The second data set comes from

practitioner responses at 11 Air Software

Factories that are currently employing Agile

techniques. Details of each follows:

Published Literature Data

To identify the relevant literature, a four phased

search strategy was employed. The first phase

involves searching for all articles generated from

search strings in two major databases: IEEE

Xplore and Science Direct. The primary search

string consists of:

“Software Effort Estimation” <AND> “Cost”

The primary string is supplemented with the use

of additional keywords to better refine the

search. The additional keywords are:

“Agile” <OR> “Expert Judgment” <OR>

“Algorithm” <OR> “Machine Learning” <OR>

“Technique” <OR> “Estimate” <AND> language

“English”

The second phase of the search strategy

eliminated all duplicate files and articles that are

not published in the English language. In phase

three, the articles are analyzed to deduce

whether they meet the inclusion and exclusion

criteria set for the study. During this phase, the

articles’ title, abstract, conclusion, and keywords

are read to determine if they meet the standards

for the research. Table 1 outlines the inclusion/

exclusion criteria. After this primary reading, the

fourth phase consists of a full read through of the

article to ensure an article meets the required

acceptance criteria.

It is important to note that simply defining or

listing a cost estimating technique resulted in that

paper being excluded from the final dataset. Our

interest is to discern those models or techniques

that are being supported or advocated for by the

authors. Including papers that simply define or

list a technique would artificially inflate the

advocacy for the cost estimating method. Figure 1

outlines the four phased search approach and the

number of articles remaining after the application

of inclusion/exclusion factors.

Inclusion Criteria Exclusion Criteria

Provides analysis or
recommendation of the
techniques, models, &
approaches used in Agile
software estimation

Not related to Agile based
environments

Published in peer-reviewed
journal articles or
conference proceedings

Simply defines or explains
the type of software
estimation techniques

Published DoD report

Published in the last 20
years (2000 or later)

Table 1: Article Inclusion/Exclusion Criteria

38 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

Ultimately, from the original 1814 search hits, 83

articles are selected for the analysis of this study

(see Appendix A for the full article list). The

articles chosen support, advocate, or defend the

usage of specific practices when conducting cost

estimation in a software environment. Seventy-

six of the articles are from an industry

perspective while seven relate to the manner in

which the DoD advises or conducts its cost

estimation. The 83 articles provide insight into

the currently recommended Agile cost estimation

best practices. This information serves as a

reference point for the Air Force specific data

collected in the second data set.

Air Force Practitioner Data

Practitioner data is obtained from a data call of

Agile Air Force Software Factories. This

information is a baseline for how the Air Force

and DoD have adapted cost estimation in an Agile

environment. As of January 2021, there are 16

identified Air Force Software Factories. Eleven of

these organizations provided information

regarding their software cost estimation process.

Organizations provided their preferred sizing

metrics and cost estimation techniques.

Additionally, Software Factories provided context

regarding their thoughts on cost estimation

techniques employed in their organization as well

as their overall level of satisfaction with the

processes.

The information collected from

the Software Factories will be

compared to the sources

compiled from the published

literature. A direct statistical

comparison of certain metrics

and techniques will be

accomplished using Clopper

Pearson binomial confidence

intervals. The comparison of the

two data sets will provide insight

into how the military is

conducting its software effort and

cost estimation compared to the

current literature.

Results

We first examine the results from the published

literature. Agile cost estimation methods in

industry today can be categorized into three

major styles: Algorithmic, Non-Algorithmic, and

Data-Based (see Table 2). Algorithmic models use

statistical formulation to generate software

estimates (Mahmood, Kama, & Azmi, 2019). The

major forms of Algorithmic models include: Use

Case Points, Function Points, Story Points,

COCOMO-II, Parametric models such as SLIM &

SEER-Sim, Case Based Analogy (CBR), and SLOC

(Mahmood, Kama, & Azmi, 2019). Use Case

Points, Function Points, Story Points, and SLOC

can all be utilized as independent variables in

Algorithmic models as a means to estimate cost.

However, at their core, they are all sizing metrics.

Therefore, for the purpose of this study, they will

be excluded from the Algorithmic category and

included in a separate table tallying sizing

metrics. Non-Algorithmic models are typically

based on interpretation and comparison to

historical data to generate estimates for the

future. The major forms of Non-Algorithmic

models include: Expert Judgment, Planning

Poker/disaggregation, and Wideband Delphi

(Mahmood, Kama, & Azmi, 2019). Data-Based

estimates utilize machine learning and artificial

intelligence to develop optimization models that

develop multifaceted relationships between

Figure 1. Article Search and Filter Process

39 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

inputs and outputs. The most common form of

Data-Based methods include: Artificial Neural

Networks (ANN’s), Genetic Algorithms, Fuzzy-

Based Models, and Bayesian Networks

(Mahmood, Kama, & Azmi, 2019).

The 83 sources from the literature review are

mapped to the various techniques (see Appendix

B). The table in Appendix B uses a number

system that references the 83 specific articles

provided in the Selected Cost Estimation

Techniques Work Cited of Appendix A. Note that a

variety of sources incorporate multiple

references to techniques in their methodology. A

reference indicates that the article advocates for

the use of a certain technique, style, or size

metric. For example, article 34 is one particular

source; however, it references the use of SLOC,

COCOMO-II, and Neural Networks. We track both

the number of references and the number of

sources for the analysis. All citations in the

Appendix B table are listed chronologically

according to their respective date of publication.

Figure 2 summarizes the data from Appendix B.

The results indicate that Neural Networks

(44.58%), Regression using Unsupervised

Learning Techniques (20.48%), and Expert

Judgment (21.69%) are amongst the most

prevalent effort estimation strategies referenced

in the literature. Additionally, the table within

Figure 2 aggregates the data by the three

Technique Styles. The % Use column identifies

the percentage of sources that reference a

particular Technique Style. Data Based

approaches are the most common, appearing in

57.83% of the sources.

Technique
Style

Techniques

Algorithmic COCOMO-II

Algorithmic SLIM

Algorithmic SEER-SEM

Algorithmic Parametric Models

Algorithmic Regression Models

Non- Expert Judgment

Non- Planning Poker/disaggregation

Non- Wideband Delphi

Data-Based Neural Networks

Data-Based Regression Using Unsupervised

Data-Based Fuzzy Models

Data-Based Genetic Algorithms

Data-Based Case Based Analogy

Data-Based Bayesian Networks

Table 2: Technique Style and Techniques

Figure 2. References to Software Effort Estimation Techniques

40 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

The sizing metric used is also an important

consideration for cost analysts. The authors are

agnostic regarding the best sizing metric.

However, many defense cost analysts have strong

opinions (for and against) regarding sizing

metrics such as SLOC. Therefore, we examine the

various sizing metrics identified in the peer-

reviewed literature (see Table 3).

The most obvious conclusion from Table 3 is that

more than half of the articles do not directly

specify the sizing metric used. Authors may make

reference to

generic size or

effort

terminology

without directly

identifying the

specific metric

utilized. There

are a total of 37

articles that did

reference size

(note that

articles 16, 20,

and 52 discuss

more than one

size metric). Of

these articles,

Use Case Points

appears to be the

most commonly

referenced sizing metric at 15.66%; however,

according to Table 3, each sizing metric appears

to have a relatively similar number of

appearances in the data set as they are all

mentioned in the range of 8.43%-15.66%.

Figure 3 illustrates the references to technique

styles when accounting for the articles that

additionally identify the sizing metric utilized.

Recall that articles that only use a size metric to

build their model are not mapped to one of the

three technique styles: Algorithmic, Non-

Sizing Metric Statistics of Usage Cited Literature

Unidentified Metric 55.42%

67, 79, 7, 43, 35, 26, 40, 25, 18, 42, 47, 21, 4,
72, 9, 49, 32, 10, 38, 75, 31, 59, 74, 63, 45,
15, 22, 24, 3, 44, 2, 81, 23, 8, 48, 76, 19, 12,
68, 69, 17, 80, 55, 41, 11, 64

Use Case Points 15.66% 51, 50, 83, 78, 71, 29, 52, 5, 20, 62, 6, 37, 16

SLOC 13.25% 1, 36, 34, 66, 20, 54, 60, 30, 27, 73, 16

Story Points 12.05% 33, 57, 56, 58, 53, 46, 61, 82, 14, 65

Function Points 8.43% 28, 70, 13, 52, 77, 16, 39

Table 3: Software Size Metrics

Figure 3: Number of References to Technique Styles Accounting for Size Metrics

41 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

Algorithmic, and Data-Based. Using Function

Points as an example, Table 3 shows seven

instances of the Function Point metric in the

literature. But Function Points only appear three

times in Figure 3 as being associated with one of

the technique styles. Another important

consideration in Figure 3 is that an article may

discuss multiple techniques. Using SLOC as an

example, Table 3 shows 11 instances of the SLOC

metric in the literature. Figure 3, however, shows

17 instances of SLOC associated with a technique

style. The reason is that six articles (1, 34, 20, 30,

27, 73) include multiple techniques with the

SLOC sizing metric.

Further analysis of the published literature

reveals a number of sources describing the

viability of a hybrid or ensemble model which

incorporates multiple techniques into the

creation of a new multifaceted one. This is one

reason articles appear in the previous tables as

repeated references. Table 4 shows 25 articles

(30.12%) recommend the construction of a

hybrid/ensemble model. Additionally, 21 of the

25 articles that mention the use of an ensemble

method incorporate a Data-Based approach in

that model. However, not all articles that mention

multiple techniques are advocating for a hybrid

model. The ‘Indifference Between Techniques’

row captures articles which find that different

techniques can be equally viable or that certain

techniques should only be utilized under specific

conditions. Lastly, the largest category

comprising 60.24% of the data set only makes

use of one technique.

There are seven sources found in the literature

regarding DoD policy and doctrine on Agile

software cost estimation. Examining these

sources separately is important given that we will

be comparing the literature to current defense

practitioner practices. Due to the limited

information, Figure 4 captures the DoD

techniques and estimating sizing metrics

specified in one graphic. There cannot be any

conclusive determinations due to the low sample

size; however, there is a noticeable lack of

discussion regarding the use of Data-Based styles.

The previous literature has highlighted the

increase in the academic discussion regarding

Data-Based styles. Only one DoD article (41)

mentions the need for effort estimating to pivot

towards using machine learning. Also of note,

there is discussion on SLOC (16, 63) as a viable

sizing metric as well as the reliance on expert

judgment (16, 45) to construct estimates.

Software Factory Results

This section provides results

from the data collection of

the 11 Agile Air Force

Software Factories. We

defined a Software Factory as

any software development

team striving to apply Agile

principles to their processes

as they support DoD systems.

The Software Factories

provided either the name of

their organization or the

specific program they are

working on (see Appendix C

Model
Statistics of

Usage
Cited Literatures

Single
Technique

60.24%

79, 7, 26, 25, 18, 42, 21, 28, 72,
49, 70, 32, 50, 83, 59, 74, 78,
33, 63, 57, 56, 58, 13, 45, 71,
29, 52, 66, 22, 53, 46, 77, 54, 3,
62, 44, 2, 23, 8, 60, 61, 12, 14,
68, 17, 80, 55, 41, 11, 39

Hybrid/
Ensemble

30.12%
43, 35, 47, 4, 36, 51, 34, 75, 31,
15, 5, 20, 24, 81, 48, 82, 19, 30,
6, 65, 69, 27, 37, 73, 64

Indifference
Between
Techniques

9.64% 67, 40, 1, 9, 10, 38, 76, 16

Table 4. References to Hybrid/Ensemble Methods

42 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

for the full list). To maintain the integrity of

responses, each of the Factory’s specific answers

will remain anonymous in the subsequent

analysis. Factories are randomly assigned a

number from 1 to 11 and any discussion

regarding specific responses will refer to the

respective sources as Factory #1-11.

The data call from the Software Factories closely

mirrored the sizing metrics and technique

categories determined in the literature review;

however, there are some

differences. The software

factory data covers three main

technique styles: Algorithmic,

Non-Algorithmic, and

Engineering Build-up. In

contrast, the three main styles

from the literature are

Algorithmic, Non-Algorithmic,

and Data-Based. There are no

references to Data-Based

techniques in any Software

Factory response, so this

technique style is effectively

eliminated from the data.

Instead, Engineering Build-up

represents a new

categorization of cost

estimation for this data set.

Also, the Algorithmic

technique style has a change to

its composition. For the

software factory data, the

various parametric techniques

are compiled together under

one ‘Parametric’ category due

to the lack of overall

responses. The Parametric

category includes references to

SEER-SEM, SLIM, COCOMO-II,

and generic parametric

techniques. Lastly, the

Software Factories elaborate

on the use of Capacity Based

and Analogy estimation which

are techniques not previously defined or

explored in the published literature data.

Figure 5 depicts the techniques used by the

Software Factories. The Non-Algorithmic

category is the largest with usage by 9 of the 11

Factories. The dominant Non-Algorithmic

techniques are planning poker in nine Factories

(3, 4, 5, 6, 7, 8, 9, 10, & 11) and subject matter

expert in seven Factories (1, 3, 4, 5, 6, 7, & 10).

Figure 4. DoD Article References to Techniques

Figure 5. Software Factory References to Techniques

43 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

In addition to Non-Algorithmic, Factories also

expressed a preference for Capacity Based

estimates. Capacity based estimating, which falls

under the new Engineering Build-up category, is

used by 7 of 11 Factories (2, 3, 4, 5, 7, 8, & 10).

Capacity based estimating examines contract

elements to individually assess the number of full

-time employees required to satisfy the

requirement. Factory #2 articulates that since

they are putting positions on contract instead of

the product itself, it makes sense to directly

estimate the capacity. They argue that the use of

Capacity Based estimation has far more fidelity

than the traditional use of any type of traditional

Parametric technique. Furthermore, Factories #3

and #4 support the notion that cost estimates

should be constructed based on equipment,

licenses, and full time employees. Factory #7

estimates the effort according to the number of

overall Story Points to be accomplished over the

course of the year and then determines the

number of full time employees required to

accomplish that established goal. Factory #8

identifies that cost estimation is independent of

software size and is rather a function of

personnel, equipment, contracting, and other

direct costs. The results illustrate that Capacity

Based is a widely utilized and supported

technique for agile cost estimation at the

Software Factories.

Figure 5 also shows that Factories identified the

usage of Algorithmic style techniques. While

there are four Factory references (4, 6, & 10) to

Parametric techniques, these references include

caveats. More specifically, three Factories that

specify the use of Algorithmic technique styles

additionally utilize Non-Algorithmic techniques.

Factory #6 articulates that Parametric techniques

are typically only utilized by contractors or when

mandated cost estimating databases do not have

analogous projects. Additionally, there is one

reference to Regression techniques at Factory #6;

however, the team highlights that only some of

the Parametric models include a Regression

based approach. Furthermore, Factory #10 states

that they rarely utilize Parametric techniques.

Specifically, the Factories articulate that none of

their organizations utilize the COCOMO-II model.

These results directly contrast the literature

results which had 9 of the 83 sources touting the

use of the COCOMO-II model. Overall, these

results highlight a predominant presence and

preference towards Non-Algorithmic technique

styles.

In addition to techniques, we are also interested

in the sizing metrics used by the Software

Factories. The data (see Table 5) does not present

a clear dominance of any one metric. Even the

most prevalent metric, Story Points, is only

incorporated in 5 of the 11 Factories (7, 8, 9, 10,

& 11). However, there are notable takeaways.

Only one Factory reports using Function Points

(11) while four Factories (6, 7, 10, & 11) utilize

Use Case Points. The data additionally highlights

the fact that only two Factories (6 & 10) utilize

SLOC. Factory #6 states they are not satisfied

with the results of SLOC estimates, and that they

typically transform SLOC values into Use Case

Points. Factory #10 caveats that their usage of

SLOC is only to support other program’s metrics.

Additionally, Factory #5 reports that they have

removed the use of SLOC in estimates as they do

not believe it to be an accurate or relevant metric.

Factory #7 clarifies that they have only recently

transitioned from using SLOC to Use Case Points

and Story Points. The results demonstrate that

SLOC is not generally considered a viable metric

at the Software Factories.

Sizing Metric Factory References

SLOC 6, 10

Function Points 11

Use Case Points 6, 7, 10, 11

Story Points 7, 8, 9, 10, 11

Table 5: Software Factory Sizing Metrics

44 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

In summary, the results from the software

factories present three major findings. First, Non-

Algorithmic techniques are prevalent in almost

the entirety of Software Factory responses while

Algorithmic styles are almost non-existent.

Second, Capacity Based estimating is highly

prevalent in Factories and represents a form of

software effort cost estimation that is not seen in

the literature. Third, almost all Factories reject

SLOC as a metric due to accuracy concerns in the

Agile environment.

Comparison of Literature and Factory Data

 There are three main conclusions derived from

comparing the literature with the practitioner

data. First, the Air Force is lagging in terms of

adaptation and adoption of Data-Based models.

However, secondly, the Air Force is synchronized

with the findings of the prevailing literature

which shows that SLOC is typically not used as a

metric in Agile environments. Lastly, despite the

literature favoring Algorithmic and Data-Based

techniques, the Air Force predominantly follows

the use of Non-Algorithmic and Capacity Based

cost estimation models.

One of the most noticeable differences is that

there are no recorded instances of Data-Based

techniques in the Software Factory data. While

perhaps surprising given the large quantity of

Data-Based solutions in the literature, the results

can be explained by a number of reasons. The Air

Force Agile Software Factories have only been

established within the last several years. As of

2021, 6 out of the 11 Factories respond that they

are either not happy or uncertain regarding their

current cost estimation process. Data-Based

solutions offer a much more advanced

methodology for conducting cost estimates as an

optimization on existing techniques. Air Force

Software Factories are still trying to establish

themselves and their overall framework.

Therefore, as of 2021, the relative infancy of the

Software Factories may help explain the lack of

adopting more complicated cost models.

Furthermore, the published literature shows the

techniques that academics are perpetuating as

the most preferred methodologies. It is worth

noting, while the case studies and data can

mathematically justify the empirical advantage of

using more refined techniques, it does not speak

toward the level of difficulty in successfully

adopting such practices. The Data-Based

techniques may offer superior solutions;

however, those solutions may only be minutely

superior to a far simpler alternative. In economic

terms, the marginal benefit experienced by the

improved results may not outweigh the marginal

costs required to adapt the model. Therefore, it is

intuitive that a less complicated and more easily

adoptable cost model could provide Factories

with a superior solution in the meantime.

Second, The sizing metric, and in particular SLOC,

is a flashpoint for software estimators. According

to the DoD’s Software Development Estimating

Handbook SLOC is one of the most widely used

methods to obtain the scope for a software

program (NCCA & AFCAA, 2008). However, many

Agile proponents argue against its use as the level

of efficiency and experience between developers

causes a disparity in the amount of SLOC and time

required to develop similar functionality (Bhatt,

et al., 2012). The research appears to support the

prevailing sentiment that SLOC is not widely used

in Agile environments. The literature only has 11

out of 83 references to SLOC as a metric while the

Software Factories had 2 out of 11 references. A

comparison of confidence intervals can be

utilized to understand if the two sets of data have

statistically equivalent proportions in regards to

the use of SLOC. A Clopper Pearson interval can

be constructed to provide a 95% binomial

confidence interval for the responses for SLOC

usage in each data set. The null hypothesis is that

there is not a significant difference between the

data sets’ use of SLOC. The alternative is that

there is a significant difference in the way each

data set uses SLOC. Figure 6 displays the two

confidence intervals overlaid on the same graph,

45 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

with the interval for the literature on the bottom

in red and the interval for the Software Factories

on the top in blue. When comparing the

confidence intervals, because there is an overlap,

this results in the failure to reject the null.

Therefore, the conclusion is that there is not a

significant difference between the ways each data

set uses SLOC as a metric.

Furthermore, there are two major caveats to the

11 references to SLOC in the literature. First,

there is correlation between SLOC and the

COCOMO-II model. The COCOMO-II model is

known to work primarily with SLOC based inputs.

Six of the 11 sources (34, 66, 20, 30, 27, & 73) in

the literature that reference SLOC additionally

recommend the COCOMO-II model. By contrast,

none of the Factories use the COCOMO-II model.

Therefore, it is not surprising to see a lack of

support for both SLOC and the COCOMO-II model

in the software factories. The contrast highlights

the fact that the COCOMO-II model may be more

prevalent in the world of academic research

rather than in regular industry practice.

Therefore, under this assumption, when

controlling for the COCOMO-II specific sources,

there are only five references to SLOC in the

literature. Second, two of those remaining five

references (16 and 60) are from DoD sources

regarding cost estimation in an Agile

environment. Therefore, when additionally

controlling for those DoD sources, there are

actually only three references (1, 36, and 54)

from the literature that recommend the use of

SLOC. The analysis further supports that the Air

Force’s Agile cost estimation practices, as

demonstrated by the Software Factory data,

coincide with the majority of the published

literature sources which also do not incorporate

SLOC into their cost estimation models. The low

proportions in both data sets show the low

prevalence of SLOC in Agile.

Third, the Software Factories shows a far greater

reliance on Non-Algorithmic models in

comparison to the published literature. Once

again, a Clopper Pearson interval can be utilized

to construct a 95% confidence interval for each

data set’s proportion of references to Non-

Algorithmic styles. The null hypothesis is that

there is not a significant difference between the

data sets’ use of Non-Algorithmic styles. The

alternative is that there is a significant difference

between the ways each data set addresses the use

of Non-Algorithmic styles. Figure 7 displays the

two confidence intervals overlaid on the same

image, with the interval for the published

literature on the bottom in red and the interval

for Data the Software Factories on the top in blue.

When comparing the confidence intervals,

because there is not an overlap this results in the

rejection of the null hypothesis. Therefore, the

conclusion is that there is a significant difference

between the ways each data set uses Non-

Algorithmic styles.

Figure 6. SLOC Usage

Figure 7. Non-Algorithmic Comparison

46 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

Conclusion

The purpose of this article was to identify the

differences or commonalities between the

recommended published literature on agile

software cost estimating in comparison to

current practices in the DoD. That comparison

illuminated three main points. First, the Air Force

needs to continue to research ways to consider

incorporating Data-Based techniques into their

Factories. Second, despite DoD literature, the Air

Force agrees with the predominant majority of

the literature and does not utilize SLOC as a

preferred metric within its Agile organizations.

Third, the Air Force adheres to Non-Algorithmic

and Capacity Based estimation which contradicts

the prevailing literature that favors Data-Based

models.

The finding regarding Data-Based models

prevalence in the literature merits further

discussion. Recall that data-based models include

things such as neural networks or machine

learning. These techniques became popular in

recent years in many other fields, and as such,

their prevalence in the Agile estimating literature

may be an artifact of this larger trend.

Additionally, it is important to note that many of

these models are “black boxes” which mask the

relationship between input and output variables.

In other words, there may be legitimate concerns

in adopting this type of methodology. Regardless,

the prudent approach would be for future

research to investigate the merits of these models

in a DoD environment.

It is an exciting time to be a cost analyst. The

adoption of agile software development in the

DoD is necessitating new ways of thinking about

software cost estimation. Understanding the

recommended methods in comparison to current

practices is a key step to illuminating a future

path where the best possible estimating methods

are employed.

1) Abrahamsson, P., Moser, R., Pedrycz, W., Sillitti, A., & Succi, G. (2007). Effort Prediction in Iterative
Software Development Processes – Incremental Versus Global Prediction Models. First International
Symposium on Empirical Software Engineering and Measurement (pp. 344-353). Madrid, Spain: ESEM.

2) Adnan, M., & Afzal, M. (2017). Ontology Based Multiagent Effort Estimation System for Scrum Agile
Method. IEEE Access Volume: 5, 25993-26005.

3) Amasaki, S., & Lokan, C. (2016). On Applicability of Fixed-Size Moving Windows for ANN-Based Effort
Estimation. Joint Conference of the International Workshop on Software Measurement and the International
Conference on Software (pp. 213-218). Berlin, Germany: IEEE.

4) Attarzadeh, I., & Ow, S. H. (2010). Proposing a New Software Cost Estimation Model Based on Artificial
Neural Networks. 2nd International Conference on Computer Engineering and Technology (pp. 487-491).
Chengdu, China: IEEE.

5) Azzeh, M., & Nassif, A. B. (2016). A hybrid model for estimating software project effort from Use Case
Points. Applied Soft Computing 49, 981-989.

6) Azzeh, M., Nassif, A. B., Banitaan, S., & Lopez-Martin, C. (2018). Ensemble of Learning Project Productivity
in Software Effort Based on Use Case Points. 17th IEEE International Conference on Machine Learning and
Applications (pp. 1427-1431). Orlando, Florida: IEEE.

7) Burgess, C. J., & Lefley, M. (2001). Can Genetic Programming Improve Software Effort Estimation? A
Comparartive Evaluation. Information and Software Technology, 863-873.

Appendix A: Selected Cost Estimation Techniques Works Cited

47 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

8) Conde, P. P., & Carrillo, I. S. (2017). Comparison of classifiers based on neural networks and support
vector machines. 5th International Conference in Software Engineering Research and Innovation (pp. 107-
115). Merida, Mexico: IEEE.

9) Cuadrado-Gallego, J. J., Rodriguez-Soria, P., & Martin-Herrera, B. (2010). Analogies and differences
between Machine Learning and Expert based Software Project Effort Estimation. 11th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(pp. 269-276). Madrid, Spain: IEEE.

10) Cunha, J. C., Costa, M., Cruz, S., Vieira, M., & Rodrigues, A. (2011). Implementing Software Effort
Estimation in a Medium-sized Company. 34th IEEE Software Engineering Workshop (pp. 92-96). Limerick,
Ireland: IEEE.

11) Dan, I., Catalin, R., & Oliver, O. (2020). An NLP Approach to Estimating Effort in a Work Environment.
International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-6).
Split, Croatia: IEEE.

12) Defense Science Board. (2018). Design and Acquisition of Software for Defense Systems. Department of
Defense.

13) Dumke, R. R., Neumann, R., & Schmietendorf, A. (2014). Empirical-Based Extension of the COSMIC FP
Method. Joint Conference of the International Workshop on Software Measurement and the International
Conference on Software Process and Produt Measurement (pp. 5-10). Rotterdam, Netherlands: IEEE.

14) Gandomani, T. J., Faraji, H., & Radnejad, M. (2019). Planning Poker in Cost Estimation in Agile Methods:
Averaging vs. Consensus. 5th Conference on Knowledge Based Engineering and Innovation (pp. 66-71).
Tehran, Iran: IEEE.

15) Garcia-Diaz, N., Garcia-Virgen, J., Farias-Mendoza, N., Veruzco-Ramirez, A., Martinez-Bonilla, R., Chavez-
Valdez, E., et al. (2015). Software development time estimation based on a new Neuro-fuzzy approach. 10th
Iberian Conference on Information Systems and Technologies (pp. 1-7). Aveiro, Portugal: IEEE.

16) Government Accountability Office. (2020). Agile Assessment Guide Best Practices for Agile Adoption &
Implementation. U.S. Government Accountability Office.

17) Goyal, S., & Bhatia, P. K. (2019). A Non-Linear Technique for Effective Software Effort Estimation using
Multi-Layer Perceptrons. International Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (Com-IT-Con) (pp. 1-4). Faridabad, India: IEEE.

18) Grimstad, S., & Jorgensen, M. (2007). Inconsistency of Expert Judgment-Based Estimates of Software
Development Effort. The Journal of Systems and Software 80, 1770-1777.

19) Hammad, M., & Alqaddoumi, A. (2018). Features-Level Software Effort Estimation Using Machine
Learning Algorithms. International Conference on Innovation and Intelligence for Informatics, Computing,
and Technologies (pp. 1-3). Sakhier, Bahrain: IEEE.

20) Hira, A., & Boehm, B. (2016). Combatting Use Case Points’ Limitations with COCOMO(R) II and Relative
Difficulty. 23rd Asia-Pacific Software Engineering Conference (pp. 353-356). Hamilton, New Zealand: IEEE.

21) Hooi, T. C., Yusoff, Y., & Hassan, Z. (2008). Comparative Study on Applicability of WEBMO in Web
Application Cost Estimation within Klang Valley in Malaysia. IEEE 8th International Conference on Computer
and Information Technology Workshops (pp. 116-121). Sydney, Australia: IEEE.

22) Idri, A., Hosni, M., & Abran, A. (2016). Improved estimation of software development effort using
Classical and Fuzzy Analogy ensembles. Applied Soft Computing 49, 990-1019.

23) Ionescu, V.-S. (2017). An approach to software development effort estimation using machine learning.
13th IEEE International Conference on Intelligent Computer Communication and Processing (pp. 197-203).
Cluj-Napoca, Romania: IEEE.

48 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

24) Iwata, K., Nakashima, T., Anan, Y., & Ishii, N. (2016). Effort Estimation for Embedded Software
Development Projects by Combining Machine Learning with Classification. 4th Intl Conf on Applied
Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence (pp. 265-270).
Las Vegas, USA: IEEE.

25) Jorgensen, M. (2004). Top-Down and Bottom-Up Expert Estimation of Software Development Effort.
Information and Software Technology 46, 3-16.

26) Jorgensen, M. (2005). Practical Guidelines for Expert-Judgment-Based Software Effort Estimation. IEEE
Software, 57-63.

27) Kadir, N. F., Sarkan, H. B., Azmi, A. B., Yusop, O. B., & Karma, M. N. (2019). Specification of a Hybrid Effort
Estimation System using UML. 6th International Conference on Research and Innovation in Information
Systems (pp. 1-7). Johor Bahru: IEEE.

28) Kang, S., Choi, O., & Baik, J. (2010). Model-based Dynamic Cost Estimation and Tracking Method for Agile
Software Develpoment. 9th IEEE/ACIS International Conference on Computer and Information Science (pp.
743-748). Yamagata, Japan: IEEE.

29) Kchaou, D., Bouassida, N., & Ben-Abdallah, H. (2015). Change Effort Estimation based on UML Diagrams
Application in UCP and COCOMO-II. 10th International Joint Conference on Software Technologies (pp. 1-8).
Colmar, France: IEEE.

30) Khan, M. S., Ul Hassan, A., Shah, M. A., & Shamim, A. (2018). Software Cost and Effort Estimation using a
New Optimization Algorithm Inspired by Strawberry Plant. 24th International Conference on Automation
and Computing (ICAC) (pp. 1-6). Newcastle Upon Tyne, United Kingdom: IEEE.

31) Kocaguneli, E., Menzies, T., & Keung, J. W. (2012). On the Value of Ensemble Effort Estimation.
Transactions on Software Engineering, 1403-1416.

32) Kocaguneli, E., Tosum, A., & Bener, A. (2010). AI-Based Models for Software Effort Estimation. 36th
EUROMICRO Conference on Software Engineering and Advanced Applications (pp. 323-326). Lille, France:
IEEE.

33) Kompella, L. (2013). Advancement of decision making in Agile Projects by Applying Logsitic Regression
on Estimates. 8th International Conference on Global Software Engineering Workshops (pp. 11-17). Bari,
Italy: IEEE.

34) Litoriya, R., Sharma, N., & Kothari, A. (2012). Incorporating Cost driver substitution to improve the Effort
using Agile COCOMO II. CSI Sixth International Conference on SOftware Engineering. Indore, India: IEEE.

35) MacDonell, S. G., & Shepperd, M. (2003). Combining Techniques to Optimize Effort Predictions in
Software Project Management. The Journal of Systems and Software 66, 91-98.

36) Machine learning methods and asymmetric cost function to estimate execution effort of software testing.
(2010). Third International Conference on Software Testing, Verification and Validation (pp. 275-284).
Campinas, Brazil: IEEE.

37) Mahmood, Y., Kama, N., Azmi, A., & Ali, M. (2020). Improving Estimation Accuracy Prediction of Software
Development Effort: A Proposed Ensemble Model. The 2nd International Conference on Electrical,
Communication and Computer Engineering (ICECCE) (pp. 1-6). Istanbul, Turkey: IEEE.

38) Mahnic, V., & Hovelja, T. (2012). On Using PLanning Poker for Estimating User Stories. The Journal of
Systems and Software 85, 2086-2095.

39) Mann, K., & Hoang, R. (2020). But Wait, There's More! Using SFPA for your Cost, Schedule, and
Performance Needs. Department of Homeland Security.

40) McConnell, S. (2006). Software Estimation: Demystifying the Black Art. Redmond, Washington: Microsoft
Press.

49 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

41) McQuade, J. M., Murray, R. M., Louie, G., Medin, M., Pahlka, J., & Stephens, T. (2019). Software is Never
Done: Refactoring the Acquisition Code for Competitive Advantage. Department of Defense Office of
Prepublication and Security Review.

42) Mendes, E., & Mosley, N. (2008). Bayesian Network Models for Web Effort Prediction: A Comparative
Study. IEEE Computer Society, 723-737.

43) Mendes, E., Watson, I., Triggs, C., Mosley, N., & Counsell, S. (2002). A Comparison of Development Effort
Estimation Techniques for Web Hypermedia Applications. Eighth IEEE Symposium on Software Metrics.
IEEE Computer Society.

44) MITRE. (2016). Federal Aviation Administration Agile Acquisition Principles and Practices. Federal
Aviation Administration.

45) Modigliani, P., & Chang, S. (2014). Defense Agile Acquisition Guide. Mitre.

46) Moharreri, K., Sapre, A. V., Ramanathan, J., & Ramnath, R. (2016). Cost-Effective Supervised Learning
Models for Software Effort Estimation in Agile Environments. 40th Annual Computer Software and
Applications Conference (pp. 136-140). Atlanta, USA: IEEE.

47) Molokken-Ostvold, K., Haugen, N. C., & Benestad, H. C. (2008). Using planning poker for combining
expert estimates in software projects. The Journal of Systems and Software 81, 2106-2117.

48) Monika, & Sangwan, O. P. (2017). Software Effort Estimation Using Machine Learning Techniques. 7th
International Conference on Cloud Computing, Data Science & Engineering - Confluence (pp. 92-98). Noida,
India: IEEE.

49) Nadgeri, S., Hulsure, V. P., & Gawande, A. D. (2010). Comparative Study of Various Regression Methods
for Software Effort Estimation. 3rd International Conference on Emerging Trends in Engineering and
Technology (pp. 642-645). Goa, India: IEEE.

50) Nassif, A. B., Capretz, L. F., & Ho, D. (2012). Estimating Software Effort Using an ANN Model Based on Use
Case Points. 11th International Conference on Machine Learning and Applications (pp. 42-47). Boca Raton,
Florida: IEEE.

51) Nassif, A. B., Capretz, L. F., Ho, D., & Azzeh, M. (2012). A Treeboost Model for Software Effort Estimation
Based on Use Case Points. 11th International Conference on Machine Learning and Applications (pp. 314-
319). Boca Raton, Florida: IEEE.

52) Nathaneal, E. H., Hendradjaya, B., & Sunindyo, W. D. (2015). Study of Algorithmic Method and Model for
Effort Estimation in Big Data Software Development Case Study: Geodatabase. The 5th International
Conference on Electrical Engineering and Informatics (pp. 427-432). Bali, Indonesia: IEEE.

53) Owais, M., & Ramakishore, R. (2016). Effort, Duration and Cost Estimation in Agile Software
Development. Ninth International Conference on Contemporary Computing (pp. 1-5). Noida, India: IEEE.

54) Phan, V. P., Chau, N. P., & Nguyen, M. L. (2016). Exploiting Tree Structures for Classifying Programs by
Functionalities. Eighth International Conference on Knowledge and Systems Engineering (pp. 85-90). Hanoi,
Vietnam: IEEE.

55) Polkowski, Z., Vora, J., Tanwar, S., Tyagi, S., Singh, P. K., & Singh, Y. (2019). Machine Learning-based
Software Effort Estimation: An Analysis. 11th International Conference on Electronics, Computers and
Artificial Intelligence (pp. 1-6). Pitesti, Romania: IEEE.

56) Popli, R., & Chauhan, N. (2014). Agile Estimation Using People and Project Related Factors. International
Conference on Computing for Sustainable Global Development (pp. 564-569). New Delhi, India: IEEE.

57) Popli, R., & Chauhan, N. (2014). Cost and Effort Estimation in Agile Software Development. International
Conference on Reliability, Optimization and Information Technology (pp. 57-61). Faridabad, India: IEEE.

58) Popli, R., & Chauhan, N. (2014). Estimation in Agile Environment using Resistance Factors. International
Conference on Information Systems and Computer Networks (pp. 60-65). Mathura, India: IEEE.

50 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

59) Prabhakar, V., & Dutta, M. (2013). Prediction of Software Effort Using Artificial Neural Network and
Support Vector Machine. Computer Science.

60) Rosa, W., Madachy, R., Clark, B., & Boehm, B. (2017). Early Phase Cost Models for Agile Software
Processes in the US DoD. ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (pp. 30-37). Toronto, Canada: IEEE.

61) Saini, A., Ahuja, L., & Khatri, S. K. (2018). Effort Estimation of Agile Development using Fuzzy Logic. 7th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO) (pp. 779-783). Noida, India: IEEE.

62) Satapathy, S. M., Acharya, B. P., & Rath, S. K. (2016). Early Stage software Effort Estimation Using
Random Forest Technique Based on Use Case Points. IET Software Vol: 10, Issue: 1, 10-17.

63) Sehra, S. K., Kaur, J., Brar, Y. S., & Kaur, N. (2014). Analysis of Data Mining Techniques for Software Effort
Estimation. 11th International Conference on Information Technology: New Generations (pp. 633-638). Las
Vegas, Nevada: IEEE.

64) Servadei, L., Mosca, E., Zennaro, E., Devarajegowda, K., Werner, M., Ecker, W., et al. (2020). Accurate Cost
Estimation of Memory Systems Utilizing Machine Learning and Solutions from Computer Vision for Design
Automation. Transactions on Computers Volume: 69, Issue: 6, 856-867.

65) Shams, A., Bohm, S., Winzer, P., & Dorner, R. (2019). App Cost Estimation- Evaluating Agile
Environments. IEEE 21st Conference on Business Informatics (pp. 383-390). Moscow, Russia: IEEE.

66) Sharma, H. K., Tomar, R., Dumka, A., & Aswal, M. S. (2015). OpenECOCOMO: The Algorithms and
Implementaion of Extended Cost Costructive Model (E-COCOMO). 1st International Conference on Next
Generation Computing Technologies (pp. 773-778). Dehradun, India: IEEE.

67) Shin, M., & Goel, A. L. (2000). Empirical data modeling in software engineering using radial basis
functions. Transactions on Software Engineering Vol: 26, Issue: 6, 567-576.

68) Shukla, S., & Kumar, S. (2019). Applicability of Neural Network based Models for Software Effort
Estimation. IEEE World Congress on Services (pp. 339-342). Milan, Italy: IEEE.

69) Shukla, S., Kumar, S., & Ranjan Bal, P. (2019). Analyzing Effect of Ensemble Models on Multi-Layer
Perceptron Network for Software Effort Estimation. IEEE World Congress on Services (pp. 386-387). Milan,
Italy: IEEE.

70) Sikka, G., Kaur, A., & Uddin, M. (2010). Estimating Function Points: Using Machine Learning and
Regression Models. 2nd International Conforence on Education Technology and Computer (ICETC) (pp. 52-
56). Shanghai, China: IEEE.

71) Silhavy, R., Silhavy, P., & Prokopova, Z. (Applied Least Square Regression in Use Case Estimation
Precision Tuning). Applied Least Square Regression in Use Case Estimation Precision Tuning. Software
Engineering in Intelligent Systems. Advances in Intelligent Systems and Computing, vol 349, 11-17.

72) Smith, A. E., & Mason, A. K. (2010). COST ESTIMATION PREDICTIVE MODELING: Regression Versus
Neural Network. The Engineering Economist 42, 137-161.

73) Suherman, I. C., Sarno, R., & Sholiq. (2020). Implementation of Random Forest Regression for COCOMO
II Effort Estimation. International Seminar on Application for Technology of Information and
Communication (iSemantic) (pp. 476-481). Semarang, Indonesia: IEEE.

74) Toka, D., & Tretken, O. (2013). Accuracy of Contemporary Parametric Software Estimation Models: A
Comparative Analysis. 39th Euromicro Conference Series on Software Engineering and Advanced
Applications (pp. 313-316). Santander, Spain: IEEE.

75) Tsunoda, M., Monden, A., Keung, J., & Matsumoto, K. (2012). Incorporating Expert Judgment into
Regression Models of Software Effort Estimation. 19th Asia-Pacific Software Engineering Conference (pp.
374-379). Hong Kong, China: IEEE.

51 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

76) Usman, M., Petersen, K., Borstler, J., & Neto, P. S. (2018). Developing and using checklists to improve
software effort estimation: A multi-case study. The Journal of Systems and Software 146, 286-309.

77) Valdes-Souto, F. (2016). Creating a Historical Database for Estimation Using the EPCU Approximation
Approach for COSMIC (ISO 19761). 4th International Conference in Software Engineering Research and
Innovation (pp. 159-166). Puebla, Mexico: IEEE.

78) Wahid, A., & Masud, P. (2013). Efficiency Factor and Risk Factor B ased User Case Point Test Effort
Estimation Model Compatible with Agile Software Development. International Conference on Information
Technology and Electrical Engineering (pp. 113-118). Yogyakarta, Indonesia: IEEE.

79) Wiegers, K. E. (2000). Stop Promising Miracles. Software Development.

80) Wright, I., & Ziegler, A. (2019). The standard coder: a machine learning approach to measuring the Effort
Required to Produce Source Code Change. IEEE/ACM 7th International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (pp. 1-7). Montreal, Canada: IEEE.

81) Yazdani-Chamzini, A., Zavadskas, E. K., Antucheviciene, J., & Bausys, R. (2017). A Model for Shovel Capital
Cost Estimation, Using a Hybrid Model of Multivariate Regression and Neural Networks. Symmetry Volume:
9, 1-14.

82) Zakrani, A., Najm, A., & Marzak, A. (2018). Support Vector Regression Based on Grid-Search Method For
Agile Software Effort Prediction. IEEE 5th International Congress on Information Science and Technology
(pp. 492-497). Marrakech, Morocco: IEEE.

Appendix B: References to Software Effort Estimation Techniques

Techniques
Statistics of

Usage
Cited Literatures

Neural Networks 44.58%
67, 1, 4, 72, 9, 49, 36, 70, 50, 34, 31, 59, 63,
15, 5, 46, 54, 24, 3, 2, 81, 23, 8, 48, 82, 19,
30, 6, 68, 69, 17, 80, 55, 41, 11, 73, 64

Expert Judgment (Top-Down,
Bottom-Up)

21.69%
35, 26, 40, 25, 18, 9, 10, 38, 75, 45, 53, 20,
44, 76, 65, 27, 37, 16

Regression Using
Unsupervised Learning
Techniques

20.48%
67, 43, 36, 32, 51, 31, 5, 24, 62, 48, 82, 19, 6,
68, 69, 55, 64

COCOMO-II 10.84% 4, 34, 29, 52, 66, 20, 30, 27, 73

Regression Model 10.84% 43, 35, 1, 75, 33, 71, 81, 60, 68

Case Based Analogy 9.64% 43, 35, 9, 31, 22, 48, 65, 37

Parametric Model 7.23% 21, 57, 56, 58, 53, 12

Wideband Delphi 7.23% 79, 40, 47, 10, 38, 16

Planning Poker 4.82% 47, 38, 76, 14

Fuzzy Models 4.82% 15, 48, 61, 6

Genetic Algorithms 3.61% 7, 31, 48

Bayesian Networks 3.61% 42, 48, 64

SLIM 1.20% 74

SEER-SEM 1.20% 74

52 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

Appendix C: Software Factories and Programs

Software Factory/Program Name Overall Mission

Bespin Delivering Custom Mobile Experiences to Airmen

Kessel Run Delivering War-Winning Software Capabilities

Platform 1 DoD Enterprise DevSecOps Provider

Unified Platform
Providing DevSecOps/Software Factory Managed
Services with Integrated Security

Rogue Blue Developing & Sustaining STRATCOM Tools

Ski Camp
Employing DevSecOps to Support Embedded
Weapon System Software

Space Camp
Software Node of Platform One Deploying Space
Mission Capabilities

SMC Forge Program
Delivering a Common Command and Control
Network for Satellites

A-10 Operational Flight Program Delivering Avionics Software for the A-10

Personnel Recovery Command and
Control

Delivering Tools & Services for Planning,
Collaborating, and Managing Search and Rescue
Efforts

F-16 Center Display Unit
Delivering Avionics Software for the F-16 Center
Display Unit

References:

Bhatt, K., Tarey, V., & Patel, P. (2012). Analysis of Source Lines of Code (SLOC) Metric. International Journal

of Emerging Technology and Advanced Engineering, 150-153.

Cohen, R. (2019, September 1). The Air Force Software Revolution. Retrieved August 24, 2020, from Air

Force Magazine: https://www.airforcemag.com/article/the-air-force-software-revolution/

Digital.AI. (2020). 14th Annual State of Agile Report. Digital.ai Software, Inc.

Freeform Dynamics & CA Technologies. (2018). How Agile and DevOps enable digital readiness and

transformation. Freeform Dynamics & CA Technologies.

Mahmood, Y., Kama, N., & Azmi, A. (2019). A systematic review of studies on use case points and expert

based estimation of software development effort. Software: Evolution and Process, 1-20.

NCCA & AFCAA. (2008). Software Development Cost Estimating Handbook. Software Technology Support

Center.

McQuade, J. M., Murray, R., Louie, G., Medin, M., Pahlka, J., & Stephens, T. (2019). Software is Never Done:

Refactoring the Acquisition Code for Competitive Advantage. Defense Innovation Board.

https://www.airforcemag.com/article/the-air-force-software-revolution/

53 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022

Software Estimating in an Agile Environment Captain James Goljan et al

Perkins, J., & Long, James. (2020, January 17). SOFTWARE WINS MODERN WARS: WHAT THE AIR FORCE
LEARNED FROM DOING THE KESSEL RUN. Retrieved August 20, 2020, from Modern War Institute:
https://mwi.usma.edu/software-wins-modern-wars-air-force-learned-kessel-run/

Pinto, A., Liggan, M. E., Subowo, N. K., Goodwin, H. G., Sekhabal-Tafti, S., & Staley, A. M. (2016). Agile

Acquisition Principles and Practices. Federal Aviation Administration.

Randall, R. M. (2014). Agile at IBM: Software Developers Teach a New Dance Step to Management. Strategy

and Leadership, 42(2), 26-29.

Regan, C., Lapham, M. A., Wrubel, E., Beck, S., & Bandor, M. (2014). Agile Methods in Air Force Sustainment:

Status and Outlook. Software Engineering Institute.

Rosa, W., Madachy, R., Clark, B. K., & Boehm, B. W. (2020). Empirical Effort and Schedule Estimation Models

for Agile Processes in the US DoD. IEEE, 1-13.

Captain James Goljan, is a cost analyst at the Space Systems Command, Los Angeles AFB, CA. He holds a BS in
Operations Research from the United States Air Force Academy and a MS in Cost Analysis from the Air Force
Institute of Technology (AFIT). His primary research interests include agile software development,
optimization models, and cost analysis. (Email address: James.Goljan.1@spaceforce.mil)

Dr. Jonathan D. Ritschel is an Associate Professor of Cost Analysis in the Department of Systems Engineering
and Management at AFIT. He received his BBA in Accountancy from the University of Notre Dame, his MS in
Cost Analysis from AFIT, and his Ph.D. in Economics from George Mason University. Dr. Ritschel’s research
interests include public choice, cost analysis, and economic institutional analysis. (E-mail address:
Jonathan.Ritschel@aft.edu)

Scott Drylie, Ph.D., is an Assistant Professor in the Department of Systems Engineering and Management at
AFIT. He holds a BS in Economics from Montana State University, a M.Ed in Education from University of
Nevada, a MS in Cost Analysis from AFIT, and a Ph.D. in Economics from George Mason University. Lt Col
Drylie’s research interests include Smithian political economy, organizational behavior, public choice, and cost
analysis (E-mail address: Scott.Drylie@afit.edu)

Dr. Edward D. White is a Professor of Statistics in the Department of Mathematics and Statistics at AFIT. He
received his BS in Mathematics from the University of Tampa, MAS from The Ohio State University, and Ph.D. in
Statistics from Texas A&M University. His primary research interests include statistical modeling, simulation,
and data analytics. (E-mail address: Edward.White@aft.edu)

https://mwi.usma.edu/software-wins-modern-wars-air-force-learned-kessel-run/

International Cost Estimating & Analysis Association

4115 Annandale Road, Suite 306 | Annandale, VA 22003

703-642-3090 | iceaa@iceaaonline.org

The International Cost Estimating and Analysis Association is a 501(c)(6) international non-profit

organization dedicated to advancing, encouraging, promoting and enhancing the profession of cost

estimating and analysis, through the use of parametrics and other data-driven techniques.

www.iceaaonline.com

Submissions:

Prior to writing or sending your manuscripts to us, please reference the

JCAP submission guidelines found at

www.iceaaonline.com/publications/jcap-submission

Kindly send your submissions and/or any correspondence to

JCAP.Editor@gmail.com

https://www.iceaaonline.com/publications/jcap-submission/
mailto:JCAP.Editor@gmail.com

