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Introduction 

Defense organizations are moving towards agile 

methodologies as a preferred approach to 

software development. The desire to implement 

agile methods is discussed in the 2019 Defense 

Innovation Board (DIB) report, which identifies 

speed and cycle time as the most important 

metrics for software development (McQuade et 

al., 2019). This movement toward agile 

methodologies provides a conundrum for defense 

cost analysts. These cost analysts are proficient in 

developing software estimates based on 

commonly accepted defense sizing metrics such 

as Source Lines of Code (SLOC). But the agile 

environment is unique. The agile mentality relies 

on flexibility and working in small iterations. 

Utilizing metrics like SLOC are often discouraged 

as it constrains the team to a pre-conceived work 

estimate and because it can incentivize the 

contractor to develop inefficient code (Bhatt, 

Tarey, & Patel, 2012). As a result, agile programs 

require cost analysts to potentially adopt new 

methods for proper cost estimation. For example, 

agile programs may use techniques such as level-

of-effort estimates which incorporate the number 

of team members and the expected duration of 

time to work on a new requirement (Rosa, 

Madachy, Clark, & Boehm, 2020). Due to the 

DoD’s lack of experience and familiarity with 

agile, the objective of this article is to investigate 

the current state of agile software cost estimation 

and provide recommendations for cost analysts.  

The DoD has only recently implemented agile 

software development, but the agile concept itself 

dates back to 2001 with the publication of the 

Agile Manifesto (Regan, Lapham, Wrubel, Beck, & 

Bandor, 2014). Since its inception, agile practices 

have become widely adopted throughout private 

industry (Randall, 2014). The private sector’s 20 

years of experience provides an opportunity to 

uncover best practices for cost analysts in an 

agile environment. To study this, we first conduct 

an extensive literature review regarding the 

recommended agile software cost estimating 

models and techniques. The question then 

becomes, “how do the recommended techniques 

align with the methods defense cost analysts are 

currently using?” To answer this, we collect data 

from 11 agile Air Force software factories to 

determine what practitioners actually do. 

Comparison of the two results will provide 

defense analysts with insight on differences 

between current DoD practices and those 

advocated by the published literature.  

 

The Importance of Software in Military 

Systems  

Software plays a critical role in military systems. 

The Defense Innovation Board (2019) states that 
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the DoD’s ability to adapt and respond to threats 

is now determined by its capacity to rapidly 

develop and deploy effective software (McQuade 

et al., 2019). Therefore, speed, cycle time, and 

value have become the most important metrics to 

effectively manage software and subsequently 

impact national defense readiness. Specifically, 

program offices can affect speed and cycle time 

by working closely with operators to deliver 

capabilities based on the most urgent 

requirements and by accounting for any new 

requirements as they arise (Cohen, 2019). To 

address this need for rapid deployment of 

valuable software capabilities, agile software 

factories such as Kessel Run were initiated. These 

software factories were designed to move the 

DoD away from traditional development 

approaches such as Waterfall or Spiral and 

towards the more modern agile approach. 

 

The Agile Advantage  

There is a debate regarding the merits of agile in 

comparison to traditional software development 

approaches. That discussion is outside the scope 

of this article. Rather, the DoD’s shift to agile 

(rightly or wrongly) necessitates a basic 

understanding of the potential advantages of an 

agile approach. What are those advantages? The 

agile software development method has 

advantages along three dimensions: 1) ability to 

rapidly adjust to the immediate needs of the 

customer 2) delivers viable products sooner and 

3) provides more cost effective programs.  

The first Agile advantage is that it provides an 

environment for the customer to communicate 

constructive feedback to the development team. 

A distinct advantage of Agile stems from the 

shorter cycle times to produce useable iterations 

on a product for the customer. Agile teams 

produce a Minimum Viable Product (MVP) which 

has enough features of the end product to meet 

the basic minimum functionality required by the 

client (McQuade et al., 2019). The use of an MVP 

allows agile teams to get immediate feedback 

from the end user which developers can utilize to 

decide the best course of action for future 

development. Agile development differs from the 

traditional Waterfall approach since constant 

feedback loops decrease the risk of implementing 

the wrong functionality for a product (Perkins & 

Long, 2020).  

The second Agile advantage is reduced cycle time. 

Agile methodologies have already been adopted 

and successfully proven to reduce the delivery 

time of products in several federal government 

organizations including the Integrated Strategic 

Planning and Analysis Network (ISPAN), 

Department of Veteran’s Affairs (VA), and 

National Aeronautics and Space Administration 

(NASA). For example, the ISPAN program 

shortened the acquisition cycle duration between 

initiation and Initial Operational Capability by 45 

months (Pinto et al., 2016). Similarly, the VA 

currently delivers capabilities an average of 4.2 

months compared to 3-7 years prior to 

implementing Agile practices (Pinto et al., 2016). 

The 14th Annual State of Agile Report showed 

that the number one reason why commercial 

companies adopted Agile practices was because it 

helped them “accelerate software 

delivery” (Digital.AI, 2020). 

The third advantage of Agile methods is that they 

have the potential to make programs more cost 

efficient. While this potential benefit of Agile is 

debatable, there is evidence for the claim. In the 

commercial sector, Digital.AI (2020) reports that 

26% of companies adopt Agile due to its 

increased cost savings (Digital.AI, 2020). 

Similarly, Freeform Dynamics & CA Technologies 

(2018) found that 29% of IT related companies 

experienced a reduction to overall costs through 

the incorporation of Agile methodologies 

(Freeform Dynamics & CA Technologies, 2018). 

Additionally, the Air Force’s first dedicated Agile 

Software Factory, Kessel Run, has already 

produced positive financial results. Kessel Run 

developed a tanker planning tool for the Qatar 

AOC utilizing state of the art software to 
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construct planning routes which immediately 

saved a reported $214,000 per day in logistics 

and fuel (Cohen, 2019). 

These benefits have resulted in Agile 

development becoming the leading methodology 

that private industries use to create software. The 

commercial successes suggest the DoD may 

similarly benefit by employing Agile. However, 

the nascent Agile implementation in defense 

programs means research into the impacts to 

defense cost estimation is scarce. The defense 

cost analyst is left with uncertainty regarding the 

best techniques and methods for an Agile 

environment.  

 

Data and Methods 

To inform the discussion on how agile cost 

estimation can be improved in the defense arena, 

we compare the predominant published 

literature on recommended agile cost estimation 

methods to current practices in Air Force 

Software Factories. This approach necessitated 

two data sets be collected and analyzed. The first 

data set comes from a robust literature search 

that resulted in 1,814 published articles being 

examined. The second data set comes from 

practitioner responses at 11 Air Software 

Factories that are currently employing Agile 

techniques. Details of each follows: 

Published Literature Data 

To identify the relevant literature, a four phased 

search strategy was employed. The first phase 

involves searching for all articles generated from 

search strings in two major databases: IEEE 

Xplore and Science Direct. The primary search 

string consists of: 

“Software Effort Estimation” <AND> “Cost” 

The primary string is supplemented with the use 

of additional keywords to better refine the 

search. The additional keywords are:  

 

“Agile” <OR> “Expert Judgment” <OR> 

“Algorithm” <OR> “Machine Learning” <OR> 

“Technique” <OR> “Estimate” <AND> language 

“English” 

The second phase of the search strategy 

eliminated all duplicate files and articles that are 

not published in the English language. In phase 

three, the articles are analyzed to deduce 

whether they meet the inclusion and exclusion 

criteria set for the study. During this phase, the 

articles’ title, abstract, conclusion, and keywords 

are read to determine if they meet the standards 

for the research. Table 1 outlines the inclusion/

exclusion criteria. After this primary reading, the 

fourth phase consists of a full read through of the 

article to ensure an article meets the required 

acceptance criteria. 

It is important to note that simply defining or 

listing a cost estimating technique resulted in that 

paper being excluded from the final dataset. Our 

interest is to discern those models or techniques 

that are being supported or advocated for by the 

authors. Including papers that simply define or 

list a technique would artificially inflate the 

advocacy for the cost estimating method. Figure 1 

outlines the four phased search approach and the 

number of articles remaining after the application 

of inclusion/exclusion factors. 

 

Inclusion Criteria Exclusion Criteria 

Provides analysis or 
recommendation of the 
techniques, models, & 
approaches used in Agile 
software estimation 

Not related to Agile based 
environments 

Published in peer-reviewed 
journal articles or 
conference proceedings 

Simply defines or explains 
the type of software 
estimation techniques 

Published DoD report   

Published in the last 20 
years (2000 or later) 

  

Table 1: Article Inclusion/Exclusion Criteria 
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Ultimately, from the original 1814 search hits, 83 

articles are selected for the analysis of this study 

(see Appendix A for the full article list). The 

articles chosen support, advocate, or defend the 

usage of specific practices when conducting cost 

estimation in a software environment. Seventy-

six of the articles are from an industry 

perspective while seven relate to the manner in 

which the DoD advises or conducts its cost 

estimation. The 83 articles provide insight into 

the currently recommended Agile cost estimation 

best practices. This information serves as a 

reference point for the Air Force specific data 

collected in the second data set.  

Air Force Practitioner Data 

Practitioner data is obtained from a data call of 

Agile Air Force Software Factories. This 

information is a baseline for how the Air Force 

and DoD have adapted cost estimation in an Agile 

environment. As of January 2021, there are 16 

identified Air Force Software Factories. Eleven of 

these organizations provided information 

regarding their software cost estimation process. 

Organizations provided their preferred sizing 

metrics and cost estimation techniques. 

Additionally, Software Factories provided context 

regarding their thoughts on cost estimation 

techniques employed in their organization as well 

as their overall level of satisfaction with the 

processes.  

The information collected from 

the Software Factories will be 

compared to the sources 

compiled from the published 

literature. A direct statistical 

comparison of certain metrics 

and techniques will be 

accomplished using Clopper 

Pearson binomial confidence 

intervals. The comparison of the 

two data sets will provide insight 

into how the military is 

conducting its software effort and 

cost estimation compared to the 

current literature. 

Results 

We first examine the results from the published 

literature. Agile cost estimation methods in 

industry today can be categorized into three 

major styles: Algorithmic, Non-Algorithmic, and 

Data-Based (see Table 2). Algorithmic models use 

statistical formulation to generate software 

estimates (Mahmood, Kama, & Azmi, 2019). The 

major forms of Algorithmic models include: Use 

Case Points, Function Points, Story Points, 

COCOMO-II, Parametric models such as SLIM & 

SEER-Sim, Case Based Analogy (CBR), and SLOC 

(Mahmood, Kama, & Azmi, 2019). Use Case 

Points, Function Points, Story Points, and SLOC 

can all be utilized as independent variables in 

Algorithmic models as a means to estimate cost. 

However, at their core, they are all sizing metrics. 

Therefore, for the purpose of this study, they will 

be excluded from the Algorithmic category and 

included in a separate table tallying sizing 

metrics. Non-Algorithmic models are typically 

based on interpretation and comparison to 

historical data to generate estimates for the 

future. The major forms of Non-Algorithmic 

models include: Expert Judgment, Planning 

Poker/disaggregation, and Wideband Delphi 

(Mahmood, Kama, & Azmi, 2019). Data-Based 

estimates utilize machine learning and artificial 

intelligence to develop optimization models that 

develop multifaceted relationships between 

Figure 1. Article Search and Filter Process 
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inputs and outputs. The most common form of 

Data-Based methods include: Artificial Neural 

Networks (ANN’s), Genetic Algorithms, Fuzzy-

Based Models, and Bayesian Networks 

(Mahmood, Kama, & Azmi, 2019).  

The 83 sources from the literature review are 

mapped to the various techniques (see Appendix 

B). The table in Appendix B uses a number 

system that references the 83 specific articles 

provided in the Selected Cost Estimation 

Techniques Work Cited of Appendix A. Note that a 

variety of sources incorporate multiple 

references to techniques in their methodology. A 

reference indicates that the article advocates for 

the use of a certain technique, style, or size 

metric. For example, article 34 is one particular 

source; however, it references the use of SLOC, 

COCOMO-II, and Neural Networks. We track both 

the number of references and the number of 

sources for the analysis. All citations in the 

Appendix B table are listed chronologically 

according to their respective date of publication. 

Figure 2 summarizes the data from Appendix B. 

The results indicate that Neural Networks 

(44.58%), Regression using Unsupervised 

Learning Techniques (20.48%), and Expert 

Judgment (21.69%) are amongst the most 

prevalent effort estimation strategies referenced 

in the literature. Additionally, the table within 

Figure 2 aggregates the data by the three 

Technique Styles. The % Use column identifies 

the percentage of sources that reference a 

particular Technique Style. Data Based 

approaches are the most common, appearing in 

57.83% of the sources.  

 

Technique 
Style 

Techniques 

Algorithmic COCOMO-II 

Algorithmic SLIM 

Algorithmic SEER-SEM 

Algorithmic Parametric Models 

Algorithmic Regression Models 

Non- Expert Judgment  

Non- Planning Poker/disaggregation 

Non- Wideband Delphi 

Data-Based Neural Networks 

Data-Based Regression Using Unsupervised 

Data-Based Fuzzy Models 

Data-Based Genetic Algorithms 

Data-Based Case Based Analogy 

Data-Based Bayesian Networks 

Table 2: Technique Style and Techniques 

Figure 2. References to Software Effort Estimation Techniques 
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The sizing metric used is also an important 

consideration for cost analysts. The authors are 

agnostic regarding the best sizing metric. 

However, many defense cost analysts have strong 

opinions (for and against) regarding sizing 

metrics such as SLOC. Therefore, we examine the 

various sizing metrics identified in the peer-

reviewed literature (see Table 3). 

The most obvious conclusion from Table 3 is that 

more than half of the articles do not directly 

specify the sizing metric used. Authors may make 

reference to 

generic size or 

effort 

terminology 

without directly 

identifying the 

specific metric 

utilized. There 

are a total of 37 

articles that did 

reference size 

(note that 

articles 16, 20, 

and 52 discuss 

more than one 

size metric). Of 

these articles, 

Use Case Points 

appears to be the 

most commonly 

referenced sizing metric at 15.66%; however, 

according to Table 3, each sizing metric appears 

to have a relatively similar number of 

appearances in the data set as they are all 

mentioned in the range of 8.43%-15.66%. 

Figure 3 illustrates the references to technique 

styles when accounting for the articles that 

additionally identify the sizing metric utilized. 

Recall that articles that only use a size metric to 

build their model are not mapped to one of the 

three technique styles: Algorithmic, Non-

 

Sizing Metric Statistics of Usage Cited Literature 

Unidentified Metric 55.42% 

67, 79, 7, 43, 35, 26, 40, 25, 18, 42, 47, 21, 4, 
72, 9, 49, 32, 10, 38, 75, 31, 59, 74, 63, 45, 
15, 22, 24, 3, 44, 2, 81, 23, 8, 48, 76, 19, 12, 
68, 69, 17, 80, 55, 41, 11, 64 

Use Case Points 15.66% 51, 50, 83, 78, 71, 29, 52, 5, 20, 62, 6, 37, 16 

SLOC 13.25% 1, 36, 34, 66, 20, 54, 60, 30, 27, 73, 16 

Story Points 12.05% 33, 57, 56, 58, 53, 46, 61, 82, 14, 65 

Function Points 8.43% 28, 70, 13, 52, 77, 16, 39 

Table 3: Software Size Metrics 

Figure 3: Number of References to Technique Styles Accounting for Size Metrics 
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Algorithmic, and Data-Based. Using Function 

Points as an example, Table 3 shows seven 

instances of the Function Point metric in the 

literature. But Function Points only appear three 

times in Figure 3 as being associated with one of 

the technique styles. Another important 

consideration in Figure 3 is that an article may 

discuss multiple techniques. Using SLOC as an 

example, Table 3 shows 11 instances of the SLOC 

metric in the literature. Figure 3, however, shows 

17 instances of SLOC associated with a technique 

style. The reason is that six articles (1, 34, 20, 30, 

27, 73) include multiple techniques with the 

SLOC sizing metric.  

Further analysis of the published literature 

reveals a number of sources describing the 

viability of a hybrid or ensemble model which 

incorporates multiple techniques into the 

creation of a new multifaceted one. This is one 

reason articles appear in the previous tables as 

repeated references. Table 4 shows 25 articles 

(30.12%) recommend the construction of a 

hybrid/ensemble model. Additionally, 21 of the 

25 articles that mention the use of an ensemble 

method incorporate a Data-Based approach in 

that model. However, not all articles that mention 

multiple techniques are advocating for a hybrid 

model. The ‘Indifference Between Techniques’ 

row captures articles which find that different 

techniques can be equally viable or that certain 

techniques should only be utilized under specific 

conditions. Lastly, the largest category 

comprising 60.24% of the data set only makes 

use of one technique. 

There are seven sources found in the literature 

regarding DoD policy and doctrine on Agile 

software cost estimation. Examining these 

sources separately is important given that we will 

be comparing the literature to current defense 

practitioner practices. Due to the limited 

information, Figure 4 captures the DoD 

techniques and estimating sizing metrics 

specified in one graphic. There cannot be any 

conclusive determinations due to the low sample 

size; however, there is a noticeable lack of 

discussion regarding the use of Data-Based styles. 

The previous literature has highlighted the 

increase in the academic discussion regarding 

Data-Based styles. Only one DoD article (41) 

mentions the need for effort estimating to pivot 

towards using machine learning. Also of note, 

there is discussion on SLOC (16, 63) as a viable 

sizing metric as well as the reliance on expert 

judgment (16, 45) to construct estimates.  

 

Software Factory Results 

This section provides results 

from the data collection of 

the 11 Agile Air Force 

Software Factories. We 

defined a Software Factory as 

any software development 

team striving to apply Agile 

principles to their processes 

as they support DoD systems. 

The Software Factories 

provided either the name of 

their organization or the 

specific program they are 

working on (see Appendix C 

 

Model 
Statistics of 

Usage 
Cited Literatures 

Single 
Technique 

60.24% 

79, 7, 26, 25, 18, 42, 21, 28, 72, 
49, 70, 32, 50, 83, 59, 74, 78, 
33, 63, 57, 56, 58, 13, 45, 71, 
29, 52, 66, 22, 53, 46, 77, 54, 3, 
62, 44, 2, 23, 8, 60, 61, 12, 14, 
68, 17, 80, 55, 41, 11, 39 

Hybrid/
Ensemble 

30.12% 
43, 35, 47, 4, 36, 51, 34, 75, 31, 
15, 5, 20, 24, 81, 48, 82, 19, 30, 
6, 65, 69, 27, 37, 73, 64 

Indifference 
Between 
Techniques 

9.64% 67, 40, 1, 9, 10, 38, 76, 16 

Table 4. References to Hybrid/Ensemble Methods 
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for the full list). To maintain the integrity of 

responses, each of the Factory’s specific answers 

will remain anonymous in the subsequent 

analysis. Factories are randomly assigned a 

number from 1 to 11 and any discussion 

regarding specific responses will refer to the 

respective sources as Factory #1-11.  

The data call from the Software Factories closely 

mirrored the sizing metrics and technique 

categories determined in the literature review; 

however, there are some 

differences. The software 

factory data covers three main 

technique styles: Algorithmic, 

Non-Algorithmic, and 

Engineering Build-up. In 

contrast, the three main styles 

from the literature are 

Algorithmic, Non-Algorithmic, 

and Data-Based. There are no 

references to Data-Based 

techniques in any Software 

Factory response, so this 

technique style is effectively 

eliminated from the data. 

Instead, Engineering Build-up 

represents a new 

categorization of cost 

estimation for this data set. 

Also, the Algorithmic 

technique style has a change to 

its composition. For the 

software factory data, the 

various parametric techniques 

are compiled together under 

one ‘Parametric’ category due 

to the lack of overall 

responses. The Parametric 

category includes references to 

SEER-SEM, SLIM, COCOMO-II, 

and generic parametric 

techniques. Lastly, the 

Software Factories elaborate 

on the use of Capacity Based 

and Analogy estimation which 

are techniques not previously defined or 

explored in the published literature data. 

Figure 5 depicts the techniques used by the 

Software Factories. The Non-Algorithmic 

category is the largest with usage by 9 of the 11 

Factories. The dominant Non-Algorithmic 

techniques are planning poker in nine Factories 

(3, 4, 5, 6, 7, 8, 9, 10, & 11) and subject matter 

expert in seven Factories (1, 3, 4, 5, 6, 7, & 10).  

Figure 4. DoD Article References to Techniques 

Figure 5. Software Factory References to Techniques 
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In addition to Non-Algorithmic, Factories also 

expressed a preference for Capacity Based 

estimates. Capacity based estimating, which falls 

under the new Engineering Build-up category, is 

used by 7 of 11 Factories (2, 3, 4, 5, 7, 8, & 10). 

Capacity based estimating examines contract 

elements to individually assess the number of full

-time employees required to satisfy the 

requirement. Factory #2 articulates that since 

they are putting positions on contract instead of 

the product itself, it makes sense to directly 

estimate the capacity. They argue that the use of 

Capacity Based estimation has far more fidelity 

than the traditional use of any type of traditional 

Parametric technique. Furthermore, Factories #3 

and #4 support the notion that cost estimates 

should be constructed based on equipment, 

licenses, and full time employees. Factory #7 

estimates the effort according to the number of 

overall Story Points to be accomplished over the 

course of the year and then determines the 

number of full time employees required to 

accomplish that established goal. Factory #8 

identifies that cost estimation is independent of 

software size and is rather a function of 

personnel, equipment, contracting, and other 

direct costs. The results illustrate that Capacity 

Based is a widely utilized and supported 

technique for agile cost estimation at the 

Software Factories. 

Figure 5 also shows that Factories identified the 

usage of Algorithmic style techniques. While 

there are four Factory references (4, 6, & 10) to 

Parametric techniques, these references include 

caveats. More specifically, three Factories that 

specify the use of Algorithmic technique styles 

additionally utilize Non-Algorithmic techniques. 

Factory #6 articulates that Parametric techniques 

are typically only utilized by contractors or when 

mandated cost estimating databases do not have 

analogous projects. Additionally, there is one 

reference to Regression techniques at Factory #6; 

however, the team highlights that only some of 

the Parametric models include a Regression 

based approach. Furthermore, Factory #10 states 

that they rarely utilize Parametric techniques. 

Specifically, the Factories articulate that none of 

their organizations utilize the COCOMO-II model. 

These results directly contrast the literature 

results which had 9 of the 83 sources touting the 

use of the COCOMO-II model. Overall, these 

results highlight a predominant presence and 

preference towards Non-Algorithmic technique 

styles.  

In addition to techniques, we are also interested 

in the sizing metrics used by the Software 

Factories. The data (see Table 5) does not present 

a clear dominance of any one metric. Even the 

most prevalent metric, Story Points, is only 

incorporated in 5 of the 11 Factories (7, 8, 9, 10, 

& 11). However, there are notable takeaways. 

Only one Factory reports using Function Points 

(11) while four Factories (6, 7, 10, & 11) utilize 

Use Case Points. The data additionally highlights 

the fact that only two Factories (6 & 10) utilize 

SLOC. Factory #6 states they are not satisfied 

with the results of SLOC estimates, and that they 

typically transform SLOC values into Use Case 

Points. Factory #10 caveats that their usage of 

SLOC is only to support other program’s metrics. 

Additionally, Factory #5 reports that they have 

removed the use of SLOC in estimates as they do 

not believe it to be an accurate or relevant metric. 

Factory #7 clarifies that they have only recently 

transitioned from using SLOC to Use Case Points 

and Story Points. The results demonstrate that 

SLOC is not generally considered a viable metric 

at the Software Factories. 

 

Sizing Metric Factory References 

SLOC 6, 10 

Function Points 11 

Use Case Points 6, 7, 10, 11 

Story Points 7, 8, 9, 10, 11 

Table 5: Software Factory Sizing Metrics 
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In summary, the results from the software 

factories present three major findings. First, Non-

Algorithmic techniques are prevalent in almost 

the entirety of Software Factory responses while 

Algorithmic styles are almost non-existent. 

Second, Capacity Based estimating is highly 

prevalent in Factories and represents a form of 

software effort cost estimation that is not seen in 

the literature. Third, almost all Factories reject 

SLOC as a metric due to accuracy concerns in the 

Agile environment. 

Comparison of Literature and Factory Data 

 There are three main conclusions derived from 

comparing the literature with the practitioner 

data. First, the Air Force is lagging in terms of 

adaptation and adoption of Data-Based models. 

However, secondly, the Air Force is synchronized 

with the findings of the prevailing literature 

which shows that SLOC is typically not used as a 

metric in Agile environments. Lastly, despite the 

literature favoring Algorithmic and Data-Based 

techniques, the Air Force predominantly follows 

the use of Non-Algorithmic and Capacity Based 

cost estimation models. 

One of the most noticeable differences is that 

there are no recorded instances of Data-Based 

techniques in the Software Factory data. While 

perhaps surprising given the large quantity of 

Data-Based solutions in the literature, the results 

can be explained by a number of reasons. The Air 

Force Agile Software Factories have only been 

established within the last several years. As of 

2021, 6 out of the 11 Factories respond that they 

are either not happy or uncertain regarding their 

current cost estimation process. Data-Based 

solutions offer a much more advanced 

methodology for conducting cost estimates as an 

optimization on existing techniques. Air Force 

Software Factories are still trying to establish 

themselves and their overall framework. 

Therefore, as of 2021, the relative infancy of the 

Software Factories may help explain the lack of 

adopting more complicated cost models.  

Furthermore, the published literature shows the 

techniques that academics are perpetuating as 

the most preferred methodologies. It is worth 

noting, while the case studies and data can 

mathematically justify the empirical advantage of 

using more refined techniques, it does not speak 

toward the level of difficulty in successfully 

adopting such practices. The Data-Based 

techniques may offer superior solutions; 

however, those solutions may only be minutely 

superior to a far simpler alternative. In economic 

terms, the marginal benefit experienced by the 

improved results may not outweigh the marginal 

costs required to adapt the model. Therefore, it is 

intuitive that a less complicated and more easily 

adoptable cost model could provide Factories 

with a superior solution in the meantime.  

Second, The sizing metric, and in particular SLOC, 

is a flashpoint for software estimators. According 

to the DoD’s Software Development Estimating 

Handbook SLOC is one of the most widely used 

methods to obtain the scope for a software 

program (NCCA & AFCAA, 2008). However, many 

Agile proponents argue against its use as the level 

of efficiency and experience between developers 

causes a disparity in the amount of SLOC and time 

required to develop similar functionality (Bhatt, 

et al., 2012). The research appears to support the 

prevailing sentiment that SLOC is not widely used 

in Agile environments. The literature only has 11 

out of 83 references to SLOC as a metric while the 

Software Factories had 2 out of 11 references. A 

comparison of confidence intervals can be 

utilized to understand if the two sets of data have 

statistically equivalent proportions in regards to 

the use of SLOC. A Clopper Pearson interval can 

be constructed to provide a 95% binomial 

confidence interval for the responses for SLOC 

usage in each data set. The null hypothesis is that 

there is not a significant difference between the 

data sets’ use of SLOC. The alternative is that 

there is a significant difference in the way each 

data set uses SLOC. Figure 6 displays the two 

confidence intervals overlaid on the same graph, 
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with the interval for the literature on the bottom 

in red and the interval for the Software Factories 

on the top in blue. When comparing the 

confidence intervals, because there is an overlap, 

this results in the failure to reject the null. 

Therefore, the conclusion is that there is not a 

significant difference between the ways each data 

set uses SLOC as a metric.  

Furthermore, there are two major caveats to the 

11 references to SLOC in the literature. First, 

there is correlation between SLOC and the 

COCOMO-II model. The COCOMO-II model is 

known to work primarily with SLOC based inputs. 

Six of the 11 sources (34, 66, 20, 30, 27, & 73) in 

the literature that reference SLOC additionally 

recommend the COCOMO-II model. By contrast, 

none of the Factories use the COCOMO-II model. 

Therefore, it is not surprising to see a lack of 

support for both SLOC and the COCOMO-II model 

in the software factories. The contrast highlights 

the fact that the COCOMO-II model may be more 

prevalent in the world of academic research 

rather than in regular industry practice. 

Therefore, under this assumption, when 

controlling for the COCOMO-II specific sources, 

there are only five references to SLOC in the 

literature. Second, two of those remaining five 

references (16 and 60) are from DoD sources 

regarding cost estimation in an Agile 

environment. Therefore, when additionally 

controlling for those DoD sources, there are 

actually only three references (1, 36, and 54) 

from the literature that recommend the use of 

SLOC. The analysis further supports that the Air 

Force’s Agile cost estimation practices, as 

demonstrated by the Software Factory data, 

coincide with the majority of the published 

literature sources which also do not incorporate 

SLOC into their cost estimation models. The low 

proportions in both data sets show the low 

prevalence of SLOC in Agile. 

Third, the Software Factories shows a far greater 

reliance on Non-Algorithmic models in 

comparison to the published literature. Once 

again, a Clopper Pearson interval can be utilized 

to construct a 95% confidence interval for each 

data set’s proportion of references to Non-

Algorithmic styles. The null hypothesis is that 

there is not a significant difference between the 

data sets’ use of Non-Algorithmic styles. The 

alternative is that there is a significant difference 

between the ways each data set addresses the use 

of Non-Algorithmic styles. Figure 7 displays the 

two confidence intervals overlaid on the same 

image, with the interval for the published 

literature on the bottom in red and the interval 

for Data the Software Factories on the top in blue. 

When comparing the confidence intervals, 

because there is not an overlap this results in the 

rejection of the null hypothesis. Therefore, the 

conclusion is that there is a significant difference 

between the ways each data set uses Non-

Algorithmic styles. 

Figure 6. SLOC Usage 

Figure 7. Non-Algorithmic Comparison 
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Conclusion 

The purpose of this article was to identify the 

differences or commonalities between the 

recommended published literature on agile 

software cost estimating in comparison to 

current practices in the DoD. That comparison 

illuminated three main points. First, the Air Force 

needs to continue to research ways to consider 

incorporating Data-Based techniques into their 

Factories. Second, despite DoD literature, the Air 

Force agrees with the predominant majority of 

the literature and does not utilize SLOC as a 

preferred metric within its Agile organizations. 

Third, the Air Force adheres to Non-Algorithmic 

and Capacity Based estimation which contradicts 

the prevailing literature that favors Data-Based 

models. 

The finding regarding Data-Based models 

prevalence in the literature merits further 

discussion. Recall that data-based models include 

things such as neural networks or machine 

learning. These techniques became popular in 

recent years in many other fields, and as such, 

their prevalence in the Agile estimating literature 

may be an artifact of this larger trend. 

Additionally, it is important to note that many of 

these models are “black boxes” which mask the 

relationship between input and output variables. 

In other words, there may be legitimate concerns 

in adopting this type of methodology. Regardless, 

the prudent approach would be for future 

research to investigate the merits of these models 

in a DoD environment.  

It is an exciting time to be a cost analyst. The 

adoption of agile software development in the 

DoD is necessitating new ways of thinking about 

software cost estimation. Understanding the 

recommended methods in comparison to current 

practices is a key step to illuminating a future 

path where the best possible estimating methods 

are employed. 
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Appendix B: References to Software Effort Estimation Techniques 

 

Techniques 
Statistics of 

Usage 
Cited Literatures 

Neural Networks 44.58% 
67, 1, 4, 72, 9, 49, 36, 70, 50, 34, 31, 59, 63, 
15, 5, 46, 54, 24, 3, 2, 81, 23, 8, 48, 82, 19, 
30, 6, 68, 69, 17, 80, 55, 41, 11, 73, 64 

Expert Judgment (Top-Down, 
Bottom-Up) 

21.69% 
35, 26, 40, 25, 18, 9, 10, 38, 75, 45, 53, 20, 
44, 76, 65, 27, 37, 16 

Regression Using 
Unsupervised Learning 
Techniques 

20.48% 
67, 43, 36, 32, 51, 31, 5, 24, 62, 48, 82, 19, 6, 
68, 69, 55, 64 

COCOMO-II 10.84% 4, 34, 29, 52, 66, 20, 30, 27, 73 

Regression Model 10.84% 43, 35, 1, 75, 33, 71, 81, 60, 68 

Case Based Analogy 9.64% 43, 35, 9, 31, 22, 48, 65, 37 

Parametric Model 7.23% 21, 57, 56, 58, 53, 12 

Wideband Delphi 7.23% 79, 40, 47, 10, 38, 16 

Planning Poker 4.82% 47, 38, 76, 14 

Fuzzy Models 4.82% 15, 48, 61, 6 

Genetic Algorithms 3.61% 7, 31, 48 

Bayesian Networks 3.61% 42, 48, 64 

SLIM 1.20% 74 

SEER-SEM 1.20% 74 
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Appendix C: Software Factories and Programs 
 

Software Factory/Program Name Overall Mission 

Bespin Delivering Custom Mobile Experiences to Airmen 

Kessel Run Delivering War-Winning Software Capabilities 

Platform 1 DoD Enterprise DevSecOps Provider 

Unified Platform 
Providing DevSecOps/Software Factory Managed 
Services with Integrated Security 

Rogue Blue Developing & Sustaining STRATCOM Tools 

Ski Camp 
Employing DevSecOps to Support Embedded 
Weapon System Software 

Space Camp 
Software Node of Platform One Deploying Space 
Mission Capabilities 

SMC Forge Program 
Delivering a Common Command and Control 
Network for Satellites 

A-10 Operational Flight Program Delivering Avionics Software for the A-10 

Personnel Recovery Command and 
Control 

Delivering Tools & Services for Planning, 
Collaborating, and Managing Search and Rescue 
Efforts 

F-16 Center Display Unit 
Delivering Avionics Software for the F-16 Center 
Display Unit 
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