
44 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

The main tenets of the Agile methodology

include: incrementally gathering requirements,

designing the system, developing and testing the

code, demonstrating to users to get feedback, and

incorporating changes to the requirements and

working software. The DevOps methodology

encourages faster software development and

release to users by putting the development and

operations related activities in parallel with each

other and automating as much of the process as

possible. Traditionally, software was built with

sequential steps, using what is called the

Waterfall model: first, the requirements were

gathered, then the system was designed, after

which the developers implemented the system,

testers then tested it, and the system was

delivered to users and customers upon

completion. Following the Agile and DevOps

methodologies allow the development team to

provide working software quickly by continually

demonstrating working features, as well as get

guidance on how much to do or when to stop if

schedule and budget constraints are reached.

Theoretically, the biggest savings were expected

in software development and sustainment efforts.

MITRE presented the expected cost impacts of

applying Agile methodologies, which states that

in the best-case scenario, some savings are

Are Agile/DevOps Programs Doing Enough Systems Engineering?

Anandi Hira

Abstract: Agile and DevOps methodologies offer efficient processes to deliver high quality products

and deploy them to the users quickly. Many commercial organizations have reported large savings

in cost and increased productivity from implementing Agile and DevOps methodologies. MITRE

completed a qualitative study of the cost impacts as a result of applying Agile methodologies and

expected the Systems Engineering, Integration and Test, and Program Management (SEITPM) costs

would either remain the same or slightly increase for Agile programs compared to Waterfall

programs (Manring, 2016). However, this paper later demonstrates that data from Space Ground

systems suggest that the SEITPM costs (as an entity) are approximately 30% lower for Agile/

DevOps programs compared to Waterfall programs. In this research study, I analyze whether the

difference in SEITPM costs between Agile/DevOps and Waterfall programs is statistically significant

by comparing the means and evaluating the statistical significance of including a categorical

variable in a regression. The results indicate that the decrease in SEITPM costs for Agile/DevOps

programs is statistically significant. Reduced systems engineering could potentially lead to troubles

while implementing the architecture/design or in the product quality of the completed system.

Some examples of possible troubles are missing requirements, interface, and integration issues with

other software and/or hardware modules/components, latent defects in the code, and high defect

rates. To understand whether the reduced SEITPM costs has any adverse effects, I also conduct a

survey with major industry prime contractors to determine if their observations reflect Space

Ground systems data, what caused the reduction in SEITPM costs, and if they noticed any positive or

negative changes in product quality as an effect. In general, organizations have experienced changes

in SEITPM activities but have not experienced adverse effects in product quality as a result.

Fortunately, Agile and DevOps methodologies provide a way to reduce costs without negative

effects on the product’s quality.

45 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

expected in software development effort and

significant savings expected in sustainment effort

(see Figure 1) (Manring, 2016).

SEITPM is an abbreviation that Department of

Defense (DoD) programs use to signify the effort

and costs spent in Systems Engineering

(requirements gathering, architecting and

designing of the program), Integration and Test,

and Program Management. In the Waterfall

software development lifecycle model, the steps

of developing a software project (requirements

gathering, architecting and designing, coding,

testing, and deploying) are followed sequentially.

Due to this, there is typically a high level of

SEITPM effort and costs that occur at the

beginning of a program (primarily due to systems

engineering and program management), which

quickly drops and levels until the end of the

program (for program management), ending in

an increase for integration and testing efforts. For

Agile/DevOps programs, on the other hand, these

SEITPM-type activities (as well software

development) are expected to occur at a more

constant rate throughout the software

development lifecycle. See Figure 2 to visually see

the difference of how SEITPM costs are expected

to behave differently through a software

development lifecycle for Waterfall and Agile/

DevOps programs/projects.

Traditionally, different teams were responsible

for Systems Engineering, Program Management,

and Integration and Test activities. These labor

categories were typically considered to be

separate from the development activities, and

therefore, tracked separately from the

development activities. The Agile and DevOps

methodologies, however, increase the speed at

which requirements can change and those

changes can be made in the resulting code by

tightly knitting all the activities with the software

development efforts (Seaver, 2018).

The definitions of the Waterfall, Agile, and

DevOps lifecycle models describe how SEITPM

costs theoretically are distributed across the

lifecycle. The MITRE study (see Figure 1)

suggests that the total SEITPM costs will be the

same or higher for Agile programs, but that

hypothesis is not based on an empirical analysis

(Manring, 2016). This research study will

determine whether total SEITPM costs differ

between Agile/DevOps and Waterfall programs

as the MITRE study suggests. Additionally, I

survey several Agile/DevOps teams in industry to

understand whether they noticed a change in the

Figure 2. Visual representation of how Systems Engineering,

Program Management, and Integration and Test (SEITPM)

costs behave through a software development lifecycle for

Waterfall and Agile/DevOps programs. This graph is

created to visually depict how the costs theoretically differ

and is not based on real data.

Figure 1. Recreation of MITRE’s image demonstrating cost

impacts of Agile methodology on various Cost Elements

(Manring, 2016)

Life Cycle Cost Element

Cost Impact
Range

Best
Case

Worst
Case

Program Management/System
Engineering

= +

Software Development - =

Integration and Test = +

Fielding/Deployment = ++

Training + ++

Sustainment -- -

++ significance increase, + increase, = no impact, -
decrease, -- significant decrease

46 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

SEITPM effort/costs, as well as the causes and

effects of the changes they observe within the

development environments. After a brief

introduction to the different software

development lifecycle models (Waterfall, Agile,

and DevOps), this paper has 2 parts:

1. Empirical comparison of SEITPM costs

between Agile/DevOps and Waterfall

programs

2. Completed surveys and discussions with

Agile/DevOps teams in industry.

Software Development Lifecycle Models

Waterfall

Traditionally, software was developed in

sequential steps, as demonstrated in Figure 3.

First, the team needs to understand and gather

the requirements of what the software system

needs to do, then design the system so that the

requirements can be satisfactorily met. Taking the

completed design and architecture, developers

implement the system, followed by testing to

ensure that the software works as intended.

Finally, the software system is deployed to the

users, and maintained as required. The main

concept is that each of the steps must be done

sequentially in order to fully understand and

implement the system correctly.

Software systems had a reputation for high failure

rates, budget, and schedule overruns, and not

meeting the users’ needs. The source of these

problems was that working software is only

produced at the very end of the waterfall

development lifecycle. This caused high amounts

of risk and uncertainty in understanding whether

the requirements could successfully be met, as

well as whether the users would be satisfied with

system (Ben-Zahia & Jaluta, 2014). Additionally, it

was difficult to assess progress, and testing efforts

would often be cut short due to schedule and

budget overruns (Davis, 2000). As technology

began to change quickly, the completed systems

would either no longer be applicable to the

current needs or compatible with updated or

changed platforms (Sinha & Das, 2021).

Agile

To react to the increasing changes in technology

and users’ needs, a group of software developers

came up with a way to speed up software

development and deploy more quickly to market/

field. The group developed a manifesto and 12

principles to define the goal and main tenets build

software successfully (Beedle, et al., 2001). The

main tenets are to shorten the time it takes to get

working software to users, and continuously and

quickly get feedback from users. The lifecycle

model constructed to fulfill the manifesto and the

12 principles are visually described in Figure 4.

Instead of performing the steps needed to develop

Figure 3. Waterfall software development lifecycle model

Figure 4. Agile software development lifecycle model

47 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

software sequentially as in the Waterfall model,

they are performed iteratively in short “sprints”

or iterations throughout the lifecycle. This allows

the developers to get feedback from users on a

regular basis, demonstrate progress by

demonstrating working software, and incorporate

changes to the requirements or needs. Many

commercial organizations and teams reported

being able to deploy software to the market/field

earlier, higher development productivity, cost

savings, and better customer experience and

satisfaction as a result of implementing Agile

practices and methodologies (Russo, 2021).

DevOps

While Agile made developing, testing, and

deploying software rapidly a common

phenomenon, many organizations had separate

development and testing teams in order for the

testing and verification to be independent from

the development efforts. Additionally, many tools

to automate various activities (such as

developing, testing, and deploying software)

became more widely available and highly utilized

in development environments. The use of parallel

teams and increased use of automation coined the

term DevOps to further shorten the development

cycle and get operational software out to the

users at a faster pace (see Figure 5). Generally,

people have been using Agile and DevOps

methodologies in conjunction. In some ways,

Table 1. Brief description of datasets used

Figure 5. DevOps software development lifecycle model

Dataset Program Level Data Description Data attributes Data Filters

Dataset A
Total or by
Increment

· Targeted Ground
systems and software-
intensive programs
across the Air Force and
Space Force.
· Data comes from Earned
Value reports from
contractors, which
includes all costs to-date
by WBS element. Also
includes an Estimate At
Completion (EAC) for
incomplete programs.

Costs by major program
elements (SEITPM,
Software, Hardware, and
Space segment) as well as
software development
hours, ESLOC (Equivalent
Source Lines of Code),
Requirements, Agile-like
development process, %
Complete, data sources,
period of performance in
months.

At least 85%
complete, to
ensure
confidence in
actual and
estimated costs.
Also, removed
programs
included in
below dataset.

Dataset B
Annual –
summed for Total
or Total to Date

· Targeted Ground
systems and software-
intensive programs
across the Air Force and
Space Force.
· Data comes from the
Government’s budgeting
tool called CcaRs. Based
on Contract Line Item
Numbers (CLINs).

Costs by major program
elements (SEITPM,
Software development,
and Platform
development), as well as
ESLOC, Requirements,
User Stories, or Story
Points.

Programs for
which costs
could be
retrieved to be
consistent with
the above
dataset.

48 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

DevOps can be considered as an extension or

special case of Agile.

Part 1: Data Analysis

Research Methodology

Datasets

This study uses two sets of data collected from

government-funded software development

programs collected by the Air Force Cost Analysis

Agency (AFCAA), further described in Table 1.

Dataset A focused on identifying whether

programs were Agile-like, while Dataset B

collected data that followed DevOps processes.

Three programs were in both datasets. To avoid

double counting these programs, the versions

from Dataset A were removed from this analysis.

Note, though previous research found that 92.5%

complete is equivalent to a complete program

(Tracy & White, 2011), this study uses a 85%

completion as the threshold to balance between

accuracy and retaining data points. Most data

points represent large, in-progress programs.

As mentioned in the Software Development

Lifecycle Models section above, many teams and

organizations utilize both Agile and DevOps

processes in conjunction. Therefore, the Agile-like

and DevOps programs are grouped together.

Table 2 shows that there are a comparable

number of data points in the 2 groups used in this

study.

Base Year Normalization

As mentioned in Table 1, both datasets used in

this study provide the costs of major program

elements, and these costs are in terms of Then

Year dollars (the cost at the time of spending). To

ensure that the data and costs are comparable, the

costs were normalized to Base Year 2020 (BY20)

dollars. The steps to perform the conversions

(explained in Table 3) differ by dataset because of

how differently the data was collected for both

datasets.

SEITPM Estimation Methodologies

Typically, SEITPM effort and costs are estimated

in comparison to the Prime Mission Product

(PMP), which is the actual software development

and infrastructure costs (costs needed to support

the development and/or operations environment,

Group Data Sources
of data

points

Waterfall · Dataset A 30

Agile/DevOps
· Dataset A

27
· Dataset B

Table 2 Software Size Metrics

Dataset Data Source Description BY20 Conversion Method

Dataset A

Data comes from Earned Value
reports, which means the dollars are a
cumulative sum of Then Year dollars
(dollars’ value at time of spending).

Mid-Point Method

The mid-point or middle year of a program is used
(start and end years are provided in the data) as the
original Constant Year (CY), which is then converted
to BY20 by applying appropriate escalation indices.

Dataset B
Data comes from budget tool that
stores costs on annual basis (in Then
Year dollars).

Sum of Annual Escalations

Since costs are provided on annual basis, each year’s
costs are escalated to BY20 dollars. All the converted
years’ costs of a program are summed up for the total
cost.

Table 3. Ways to group and estimate SE, IT, and PM efforts and costs

49 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

such as software licenses and supporting

hardware). SEITPM is compared to PMP in 2

ways, typically (Markman, Ritschel, & White,

2021):

1. SEITPM is estimated as a factor of, or in

proportion to, the PMP costs (SEITPM/PMP)

2. Using a regression where SEITPM costs is a

dependent variable and PMP costs is the

independent variable. The resulting

regression is also called a Cost Estimating

Relationship (CER)

As explained previously, SEITPM consists of 3

types of labor/activities: Systems Engineering,

Integration and Test, and Program Management.

Depending on how teams actually track and

bucket their costs and efforts across these 3

activities, it is very common for these 3 activities

to be grouped or separated in the 3 ways

demonstrated in Table 4.

Analysis Method

The primary objective of this research study is to

determine whether there is a significant

difference in SEITPM costs between Agile/DevOps

and Waterfall programs. As mentioned in the

previous subsection, SEITPM is estimated in 2

ways: as a factor of PMP costs or using a

regression against PMP costs. Therefore, this

study analyzes if there is a difference in SEITPM

costs across the Agile/DevOps and Waterfall

groups by looking at the data in both ways. A high

-level description of the analysis method by type

is explained in Table 5.

Also explained in the previous subsection are the

3 variants of the SEITPM and PMP costs, and all 3

variants are used in the comparison between

Agile/DevOps and Waterfall programs.

Results

SEITPM Proportion Comparison

The t-test is a parametric test, which means that

the test assumes the variables used as inputs are

normally distributed. Table 6 has the Shapiro-

Wilk test p-values for the log-transformed

variables (most variables were not normally

distributed before the transformation) across the

2 groups (Waterfall and Agile/DevOps), and p-

values larger than 0.05 imply the variable cannot

reject the null hypothesis of not being normally

distributed.

For the variables that returned p-values of less

than 0.05 (dark red text in Table 6), the non-

parametric Mann-Whitney test is run instead of

Estimation
Method

Analysis Method

SEITPM/
PMP
Proportion

Compare the means of the SEITPM/PMP
proportions, as well as the individual
activities’ proportions (Systems
Engineering (SE), Program Management
(PM), and Integration and Test (IT)),
between the 2 groups using t-test. The t-
test should return a p-value of less than
0.05 for difference to be considered
statistically significant. The variables
used as inputs are log-transformed and
tested for normal distribution using the
Shapiro-Wilk test (need a p-value of at
least 0.05). If the variables are not
normally distributed, the Mann-Whitney
test is run, which also requires a p-value

SEITPM
vs PMP
Regression
/CER

Include a categorical/dummy variable
for Agile/DevOps and evaluate the p-
value of the coefficient, as well as
goodness of fit and prediction accuracy
statistics. The p-value of the coefficient
should be less than 0.05 for statistical
significance.

Table 5. Summary of analysis methods by the 2 SEITPM
estimation methods

Numerator or
Dependent
Variable

Denominator
or Independent
Variable

Total Costs

SE + IT + PM PMP SEITPM + PMP

SE + PM PMP SEPM + PMP + IT*

SE + PM PMP + IT SEPM + (PMP + IT)

* Note, IT costs need to be added separately to get the
total program’s cost in the 2nd option/row

Table 4. Ways to group and estimate
SE, IT, and PM efforts and costs

50 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

Figure 6. Box plots of the 3 SEITPM variants' and individual activities' (SE, PM, and IT) proportions to PMP costs across

Waterfall and Agile/DevOps groups

Figure 7. Box plots of the 3 SEITPM variants' and individual activities' (SE, PM, and IT) proportions to PMP costs across

Waterfall and Agile/DevOps groups using the subset of smaller programs

51 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

the t-test. The Mann-Whitney test also needs to

return p-values of less than 0.05 for the

difference between the groups to be considered

statistically significant.

Along with the p-value, the t-test reports a t-value

which represents the ratio of the difference

between the two groups’ means. Therefore, t-

values larger than 1 and p-values of less than 0.05

indicate there is a statistically significant

difference between the Waterfall and Agile/

DevOps means for the variable being tested. The

Mann-Whitney also produces a W-value, but it is

the sum of the ranks of the first sample and does

not indicate a difference between the 2 samples.

The W-value does not provide a sense of

difference or proportions between the 2 samples

and, therefore, is not reported in this paper.

Table 7 shows the tests’

results comparing Waterfall

and Agile/DevOps groups

and Figure 6 visually

demonstrates the differences

between the groups using

box plots (the proportions

on the y-axis are not shown

to maintain confidentiality).

Both show that SEITPM, PM,

and IT proportions of Agile/

DevOps programs are

significantly lower than

Waterfall programs.

The largest Agile/DevOps

program is significantly

smaller than several programs in the Waterfall

group (in terms of PMP BY$M). To compare the

means of the SEITPM proportions of PMP costs

across similarly-sized programs, the dataset is

trimmed at programs with PMP costs that are no

larger than 5% more than the largest Agile/

DevOps program.

Re-running the above-explained analyses for the

smaller programs subset of the data led to the

same conclusions: SEITPM, PM, and IT

proportions for Agile/DevOps programs are

significantly lower than Waterfall programs. SE is

the only activity whose difference between the

Agile/DevOps and Waterfall groups is not

statistically significant. Table 8 and Figure 7 show

the statistical test results and the visual

representation of the groups’ behaviors across

the SEITPM variants and individual activities,

respectively. As before, the dark red text in Table

8 represents tests with p-values that suggest the

 Shapiro-Wilk p-values

 Waterfall
Agile/

DevOps

log(SEITPM/PMP) 0.45 0.81

log(SEPM/PMP) 0.97 0.98

log(SEPM/(PMP +
IT))

0.92 0.64

log(SE/PMP) 0.0006 0.02

log(PM/PMP) 0.44 0.06

log(IT/PMP) 0.19 0.04

Table 6. Shapiro-Wilk test for normality p-values on log-
transformed variables

 t-test/Mann-Whitney test

 t-values p-values

log(SEITPM/PMP) 3.295 0.0009

log(SEPM/PMP) 2.84 0.003

log(SEPM/(PMP + IT)) 2.13 0.02

log(SE/PMP) 0.08

log(PM/PMP) 3.09 0.002

log(IT/PMP) 0.004

Table 7. T-test and Mann-Whitney test results on log-
transformed variables

 Shapiro-Wilk p-values t-test/Mann-Whitney test

 Waterfall
Agile/

DevOps
t-values p-values

log(SEITPM/PMP) 0.43 0.81 3.06 0.002

log(SEPM/PMP) 0.72 0.98 2.54 0.007

log(SEPM/(PMP + IT)) 0.92 0.64 2.13 0.02

log(SE/PMP) 0.004 0.02 0.11

log(PM/PMP) 0.61 0.06 2.69 0.005

log(IT/PMP) 0.12 0.04 0.004

Table 8. Shapiro Wilk and either t-test or Mann-Whitney test results on log-
transformed variables across the subset of smaller programs

52 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

data cannot be considered normally distributed

or that the difference between the groups is not

considered statistically significant. The

proportions on the y-axis in Figure 7 are not

shown to maintain confidentiality, but the

SEITPM, PM, and IT proportions are about 30%

lower for the Agile/DevOps programs.

SEITPM CER (Cost Estimation Relationship)

In order to rigorously compare and evaluate the

regressions’ and goodness-of-fit statistics, as well

as use a curve that fits the actual trend of how

SEITPM costs grow, I log-transformed the

variables and ran linear regressions. The 2

regressions I compare are:

1. SEITPM vs PMP without any other variables

2. SEITPM vs PMP with Agile/DevOps

categorical variable (set to 1 if the program is

an Agile/DevOps program or 0 otherwise)

In both cases, the SEITPM and PMP variables are

log-transformed. The Agile/DevOps variable is

not log-transformed, and Equation 1 displays

how the linear regression is run and how it

converts back to unit-space. Therefore, all

regression statistics displayed in this section are

in log-space, not unit-space. To reduce bias in the

regression, I used the Minimum-Unbiased-

Percentage Error (MUPE) with Modified

Marquardt method, which weighs the data points

such that the average error percentage is 0 (Hu,

2001).

log(SEITPM) = a + b × log(PMP) + Agile/DevOps × c

SEITPM = a × PMPb x (10c)Agile/DevOps

Figure 8 displays that the trendlines of SEITPM

costs against PMP costs for Agile/DevOps

programs are, with a few exceptions, consistently

and proportionately lower than Waterfall

programs. Similar trends are visible when SEPM

is graphed against PMP and PMP+IT.

Equation 1 Log-transformed linear regression and

conversion to unit-space with Agile/DevOps categorical

variable

Figure 8. SEITPM costs against PMP (Prime Mission Product) costs trendlines, grouped by
development type (Waterfall and Agile/DevOps). Actual data points are removed to preserve

the confidentiality of the programs

53 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

SETIPM = 1.6734 × 0.6864Agile/DevOps × PMP0.9005

SEPM = 1.3201 × 0.6863Agile/DevOps × PMP0.8858

SEPM = 1.0578 × 0.7206Agile/DevOps × (PMP + IT)0.8908

The p-values on the intercept variable (in log-

space) and on the Agile/DevOps variable, and a

couple goodness-of-fit statistics on the

regressions are listed in Table 9. The 6

regressions are for the 3 variants of SEITPM with

and without the Agile/DevOps categorical

variable. The results in Table 9 show that Agile/

DevOps categorical variable is statistically

significant (the p-values are well below 0.05 for

all 3 variants of SEITPM) and the goodness-of-fit

statistics are better than the regressions without

the categorical variable. Additionally, the base/

coefficient values for the Agile/DevOps variables

(in Equation 2) suggest that SEITPM costs are

about 30% lower for Agile/DevOps programs

compared to Waterfall programs (similar to the

results found when comparing the means in the

SEITPM Proportion Comparison subsection

above). Note, the resulting regressions/CERs in

Equation 2 should not be used without

understanding the underlying data and its ranges

or for application types or domains not

represented in the datasets used in this study.

Conclusion

Analyzing the data available on the Space Ground

systems concludes that the SEITPM costs are

about 30% lower for Agile/DevOps programs

compared to Waterfall programs. Looking at each

of the activities separately (SE, PM, and IT),

Program Management (PM) and Integration and

Test (IT) costs are also significantly lower for the

Agile/DevOps programs compared to Waterfall

programs. While there is a slight reduction in

Systems Engineering (SE) for Agile/DevOps

programs, the difference is not considered

statistically significant.

These differences can be caused by the

differences in the Agile and DevOps

methodologies compared to Waterfall, such as:

• Systems Engineering (SE) and Integration
and Test (IT) activities should be more
incremental and level-loaded, along with
software development activities (Seaver,
2018).

• The Agile principles encourages teams to be
self-organizing and be part of the task
management and decision-making process.
Therefore, moving some of the Program
Management and Systems Engineering

Without Agile/DevOps

variable
With Agile/DevOps variable

SEITPM
vs PMP

SEPM vs
PMP

SEPM vs
PMP+IT

SEITPM
vs PMP

SEPM vs
PMP

SEPM vs
PMP+IT

Intercept p-value 0.5642 0.6672 0.2724 0.0399 0.3485 0.8554

Agile/DevOps
 0.0028 0.0123 0.0293

p-value

Adj R2 for MUPE 85.16% 80.19% 80.62% 87.01% 81.83% 81.79%

Standard Error 0.2026 0.2388 0.2352 0.1849 0.225 0.2261

Average Error % 39.09% 48.78% 47.94% 34.41% 43.95% 44.77%

% of Predictions within
25% of actuals

50.88% 31.58% 31.58% 49.12% 36.84% 33.33%

% of Predictions within
30% of actuals

54.39% 40.35% 42.11% 56.14% 42.11% 43.86%

Table 9. Goodness-of-fit and prediction accuracy statistics for SEITPM/SEPM Regressions/CERs (Equation 2)

Equation 2 SEITPM/SEPM Variants’ Regressions/CERs

54 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

activities down to the software development
team (Beedle, et al., 2001).

• Agile teams are cross-functional and breaking
out the effort and costs for specific activities
becomes difficult, if not impossible (for
example, software development and
integration activities) (Beedle, et al., 2001).

• The Agile principles suggest maximizing the
amount of work that is not done or
streamlining the processes to focus on doing
just enough work (Beedle, et al., 2001).

A concern of the reduced activities (and as a

result, cost) is whether there would be adverse

effects on the product’s quality, such as not being

able to meet scalability or level of service

requirements. To understand whether applying

the Agile and DevOps methodologies lead to a

reduction in SEITPM costs and whether this

reduction leads to lower product quality, the next

step of this research was to survey and have

discussions with industry partners asking for

insights, causes, and effects of the phenomenon.

Part 2: Survey Industry

Research Methodology

Survey Questions

The goals of surveying industry were to

understand whether or not the software

development teams were actively noticing that

the Agile/DevOps programs required less SEITPM

activities, as well as the causes and effects of this

phenomenon. The questions formulated to meet

these goals, along with Agile principles or beliefs

that support the questions are in Table 10.

Survey Participants

I worked with Space Systems Command (SSC)

Financial Management Cost Research (FMCR)

department to set up meetings with their industry

partners to brief the data analytics results and get

their answers on the questions listed in the

previous subsection. These industry partners are

also represented in the dataset used in the first

part of this research study. The suggestions I

made for the participants to attend the meeting

and respond to the questions were Program

Managers, cost analysts, and/or team members

that have:

• An understanding of the SEITPM efforts,
staffing, and/or costs

• Worked on an Agile/DevOps program that is
at least 75% complete

• And also worked on a Waterfall program to
be able to comment on the differences
between Waterfall and Agile/DevOps
programs (or members from both types of
programs could also join for real-time
comparisons)

The participants were given 2 options for how to

order the briefing of the results and answering the

questions:

1. Participants could provide responses before
the briefing. I would then review the
responses and ask follow-up questions after
briefing the results.

2. Participants can first view the briefing of the
results and dynamically answer the
questions during the meeting. This option
allowed for participants to get necessary
context and background for the questions,
which may help participants get clarification
and figure out who can answer the questions.

I received responses and held meetings with 5

organizations, using a combination of the two

methods above with a combination of Program

Managers, cost analysts, and software developers.

The organizations and respondents are not

mentioned in this paper to maintain

confidentiality.

Results

In many cases, the industry partners provided

very extensive responses to the questions. In this

paper, I provide a summary of the responses that

sufficiently answer the questions.

Question 1: Include SEITPM in Scrum/Development

Teams?

55 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

Agile Principles [4] Q# Questions

Teams should be highly
collaborative, self-
organizing, and cross-
functional.

1

On Agile/DevOps programs, do you include SEITPM FTEs in the Scrum/
development teams? Does the role of the SEITPM FTEs in the Scrum/
Development teams focus only on the Scrum team product? Are any
overarching system-level Systems Engineering or system architecture
efforts included?

Incrementally gather
requirements, develop
and test software, and
deliver to users.

2
Are SEITPM hours/cost level-loaded across the lifecycle versus high in the
beginning for Agile/DevOps programs?

The data we have suggests that the overarching SEITPM is about 20%
lower for Agile/DevOps programs compared to Traditional programs. By
looking at each of the activities (Systems Engineering, Program
Management, and Integration & Test) separately:

The best architectures,
requirements, and
designs emerge from self-
organizing teams.

3

Systems Engineering may have reduced slightly, but not significantly. Are
you noticing if the overarching system-level Systems Engineering is about
the same across Waterfall and Agile/DevOps programs? If different, how so
and why?

Teams should be highly
collaborative, self-
organizing, and cross-
functional.

4

Program Management is significantly less for Agile/DevOps compared to
Waterfall programs. Are you noticing the same behavior? What is causing
that (examples: reduced deliverables, management activities being moved
into development teams)?

Incrementally gather
requirements, develop
and test software, and
deliver to users.

5

Integration & Test is significantly less for Agile/DevOps compared to
Waterfall programs. Are you noticing the same behavior? What is causing
that (example: integration and testing efforts being captured within
development efforts, as they moved into Scrum/development teams)?

Teams should be highly
collaborative, self-
organizing, and cross-
functional.

6

On 2 different datasets, Causal Inference algorithms found a causal link
between analyst and programmer capability. From my previous
experiences, I found that teams that had good analytical skills also had the
tendency to be better programmers. Have you noticed if the analytical
and/or programming skills of the developers improved with SE and PM
FTEs being involved in the sprints/iterations?

The best architectures,
requirements, and
designs emerge from self-
organizing teams.

7
Has including SEITPM FTEs in the Scrum/development teams led to
improved requirements gathering and accuracy, architectures, and
designs?

Incrementally gather
requirements, develop
and test software, and
deliver to users.
Incremental deliveries,
feedback loops, and
frequently tested
software lead to better
working software and
higher customer
satisfaction.

Since requirements are gathered and the design/architecture is built
incrementally:

8 Have you noticed positive or negative changes in the quality of products?

9
Have you noticed any trouble with meeting level of service requirements
later in the development lifecycle, compared to when using the Waterfall
lifecycle mode?

10
Has the maintainability of the product improved/decreased for Agile/
DevOps programs compared to Waterfall?

11
Have you noticed reduction/increase in rework, scrapped code, and
defects?

Table 10. Industry Survey Questions

56 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

Question: On Agile/DevOps programs, do you

include SEITPM FTEs in the Scrum/development

teams? Does the role of the SEITPM FTEs in the

Scrum/Development teams focus only on the

Scrum team product? Are any overarching system

-level Systems Engineering or system architecture

efforts included?

The goal of the first question is to see if

organizations are creating cross-functional teams

in practice, and whether systems engineers

perform any overarching system-level functions

within that role. While systems engineers are

needed to ensure that a single component works

as expected, Systems Engineering (SE) at the

overarching system-level ensures that

components are able to integrate and that the

system as a whole works as expected. Summaries

of responses received are represented in Figure 9.

In general, the industry is creating cross-

functional teams that include software

developers, systems engineers, and in some cases,

testers. However, the SEs typically only serve to

provide support in the development of the team’s

tasks. Hence, no Systems Engineering (SE) that

could be attributed to the systems-level is being

done within the development/Scrum teams.

Question 2: Is SEITPM level-loaded?

Question: Are SEITPM hours/cost level-loaded

across the lifecycle versus high in the beginning

for Agile/DevOps programs?

Since Agile and DevOps methodologies promote

performing all activities in an iterative fashion,

the SEITPM activities and efforts should be mostly

level-loaded across the lifecycle in comparison to

the Waterfall programs. All industry partners

confirmed noticing the same phenomenon.

Question 3: Reduction in Systems Engineering?

Question: Systems Engineering may have reduced

slightly, but not significantly. Are you noticing if

the overarching system-level Systems Engineering

is about the same across Waterfall and Agile/

DevOps programs? If different, how so and why?

In the first part of this research study, the Mann-

Whitney test suggested the means of SE/PMP

were not significantly different between Agile/

DevOps and Waterfall programs. With this

question, the industry partners let us know

whether they noticed any significant reductions in

the amount of SE used or needed for Agile/

DevOps programs compared to Waterfall ones.

Organization 4 worked on a program where they

initially thought they were realizing a 65%

Figure 9. Quantitative Summary of Survey Question 1
Responses

Industry Partner Summarized Answer

Organization 1
Similar amount of SE activities. Maybe some more upfront activities, but balances with
savings by including SE FTEs with the development team.

Organization 2 Don’t have data, but probably similar between Agile and Waterfall

Organization 3
Slight reduction, but similar. Developers tend to pick up some of the functionality
along the way.

Organization 4 Not sure.

Organization 5

One program noticed higher SE activities and costs compared to a typical Waterfall
program, but noted that the nature of the program warrants this. On another program,
the team is noticing significantly lower SE costs because the activities are being
pushed down to the software development teams.

Table 11. Survey Question 3 Response Summaries

57 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

savings in SE costs. Later, they realized they did

not do enough SE activities upfront, which led

to increased costs later in the lifecycle.

Therefore, they are not sure if the SE costs

would be lower for Agile/DevOps programs in

an ideal scenario. This experience

demonstrates a concern that insufficient

systems engineering can lead to adverse effects

on the program.

In general, the industry partners did not have

or analyze their data for whether or not the SE

costs were different between Agile/DevOps

and Waterfall programs. However, most

responses indicate that the team did not notice

significant changes in SE activities between

Agile/DevOps and Waterfall programs. This

may indicate that the industry partners are also

being cautious with ensuring that enough

systems engineering activities are being done

on programs.

Question 4: Reduction in Program Management?

Question: Program Management (PM) is

significantly less for Agile/DevOps compared to

Waterfall programs. Are you noticing the same

behavior? What is causing that (example:

reduced deliverables, management activities

being moved into development teams)?

This question received mixed answers across

the organizations. While the data suggests that

PM costs are lower for Agile/DevOps programs

compared to Waterfall, the industry partners

had different experiences. Three organizations

noted that the development team took over

some of the PM responsibilities and activities,

which leads to a reduction in the PM costs. One

organization further noted that the reduction is

caused by the developers directly interacting

with the Government side of the program,

versus going through the PM. Yet, the first two

organizations state that the PM activities may

have actually increased for Agile/DevOps

programs in order to change existing processes

and engage the stakeholders regularly.

Question 5: Reduction in Integration and Test?

Question: Integration & Test (IT) is significantly

less for Agile/DevOps compared to Waterfall

programs. Are you noticing the same behavior?

What is causing that (example: integration and

testing efforts being captured within

development efforts, as they moved into

Scrum/development teams)?

Generally, all industry partners are seeing a

reduction in IT costs because the activities are

either being bucketed with development or

because of savings from automated and

continuous testing.

Question 6: Improvements in analytical and/or

programming skills?

Question: On 2 different datasets, Causal

Inference algorithms found a causal link

between analyst and programmer capability.

From my previous experiences, I found that

teams that had good analytical skills also had

Figure 10. Quantitative Summary of Survey
Question 3 Responses

Figure 11. Quantitative Summary of Survey
Question 4 Responses

58 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

the tendency to be better programmers. Have you

noticed if the analytical and/or programming

skills of the developers improved with SE and PM

FTEs being involved in the sprints/iterations?

Causal Inference algorithms attempt to discover

causal relationships from observational data. I

applied these algorithms on 2 software

development datasets, and the algorithms

returned a link between analyst and programmer

capabilities in both datasets (though, I did not

emphasize or report this result in the studies, as

the focus was on causal relationships with effort

and schedule) (Hira, Boehm, Stoddard, & Konrad,

Preliminary Causal Discovery Results with

Software Effort Estimation Data, 2018) (Hira,

Boehm, Stoddard, & Konrad, Further Causal

Search Analyses With UCC's Effort Estimation

Data, 2018) (Alstad, Hira, Brown, & Konrad,

2021). In general, industry agrees that including a

system engineer with the Scrum/development

teams improves productivity, and that the Agile

methodology allows developers to demonstrate

and improve their analytical and programming

skills.

Question 7: Requirements, Architectures, and

Designs Improving?

Question: Has including SEITPM FTEs in the

Scrum/development teams led to improved

requirements gathering and accuracy,

architectures, and designs?

Table 13. Survey Question 7 Response Summaries

Industry Partner Summarized Answer

Organization 1
Improvements in peer review and test case development. However, not sure
analytical/coding skills improved because of Agile or including SE personnel with
the software development teams.

Organization 2
Noticed cross-training between the SE and development personnel, and
improvements in the knowledge base.

Organization 3
The Agile methodology provides opportunities for developers to demonstrate
their skills more compared to Waterfall.

Organization 4
Noticed an increased in productivity with including a SE with the development
team.

Organization 5
Noticed an increase in productivity because SE and IT personnel being part of the
Scrum team allows issues to be troubleshooted faster.

Table 12. Survey Question 6 Response Summaries

Industry Partner Summarized Answer

Organization 1
Improvements in requirements gathering, architectures, and designs do not come
free with Agile/DevOps. Need a higher-level architecture team.

Organization 2
Really see improvements when stakeholders participate in planning meetings.
They are able to clarify and see the requirements.

Organization 3
Noticed less rework, which implies better accuracy. Architecture can depend on
external systems and other dependencies, but easier to incorporate changes with
Agile/DevOps model.

Organization 4 Not sure (don’t have sufficient experience to comment on this)

Organization 5

One program did not start to adopt Agile methodologies until a bit later, but the
developers found some of the requirements are not as testable as they could and
should have been. Therefore, they are having to rewrite them. Another program
started with Agile/DevOps methodologies and found the design is better as a
result.

59 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

One of the Agile Principles states that “the best

architectures, requirements, and designs emerge

from self-organizing teams” (Beedle, et al., 2001).

From the responses received in Table 13,

industry generally notices improvements in

requirements gathering, designs/architectures,

and rework as a result of adopting Agile/DevOps

methodologies. However, as the first organization

stated, this does “not come free.” The

improvements depend on having a good

architecture team, the team engaging with the

stakeholders, and working together to write the

requirements.

Question 8: Change in Quality of Products?

Question: Since requirements are gathered and

the design/architecture is built incrementally,

have you noticed positive or negative changes in

the quality of products?

While 2 organizations have experienced both

positive and negative changes to product quality,

3 organizations have noticed improvements in

product quality as a result of adopting Agile/

DevOps methodologies. While product quality

can improve, teams must ensure to not lose focus

of the bigger picture and not think of their

development environment as a playground.

Question 9: Trouble with Meeting Level of Service

Requirements?

Question: Since requirements are gathered and

the design/architecture is built incrementally,

have you noticed any trouble with meeting level

of service requirements later in the development

lifecycle, compared to when using the Waterfall

lifecycle mode?

“Level of service” requirements refer to

requirements that affect the usage of the software

systems, such as meeting availability, reliability,

scalability, etc. needs. One concern with the

design/architecture being built incrementally is

whether the architecture/design can and will

scale to the needs of the users, especially if these

requirements are pushed towards the end of the

lifecycle.

While 2 organizations could not comment on this

question, the remaining 3 noticed that there is no

issue in meeting level of service requirements as

long as the discussions, implementing, and

testing of these requirements are being done

early.

Question 10: Change in Maintainability?

Question: Since requirements are gathered and

the design/architecture is built incrementally,

has the maintainability of the product improved/

decreased for Agile programs compared to

Waterfall?

For this question, maintainability refers to how

easily existing software can be modified and

maintained. Specific metrics were not required

for this question, but just the teams’ intuition on

how easily they were able to make changes to

their existing code.

From the responses, it seems the maintainability

of software depends on the system itself and

decisions made by the team. This question

received varied responses across the

participants.

Table 14. Survey Question 11 Response Summaries

Industry Partner Summarized Answer

Organization 1 Stable, upfront requirements needed for less rework. But Agile can lead to rework.

Organization 2 Fewer defects, because seeing and fixing earlier.

Organization 3
Decrease in rework and less defects. Comes down to overall design, complexity of
programs, and maturity of teams.

Organization 4 No answer

Organization 5 Same, but earlier in the lifecycle.

60 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

Question 11: Change in Rework and Defects?

Question: Since requirements are gathered and

the design/architecture is built incrementally,

have you noticed reduction/increase in rework,

scrapped code, and defects?

Agile/DevOps teams are noticing fewer defects at

the end of the lifecycle, because defects are being

noticed and fixed earlier. Only 1 organization

provided insight on rework, which seems to

depend on the stability of requirements.

Conclusion

From the survey responses received from and

follow-up discussions with industry, the

phenomena and insights that are mostly common

across the 5 organizations are:

• Software development/Scrum teams are

cross-functional: SE and IT full-time

equivalents (FTEs) are generally included.

• SEITPM activities/effort/costs are level-

loaded across the lifecycle.

• IT costs are lower due to the activities being

bucketed with development, and due to

savings from automated and continuous

testing.

• Including SE FTEs with development/Scrum

teams leads to higher productivity.

• Organizations have noticed an improvement

in requirements gathering, architectures and

designs from adopting Agile/DevOps

methodologies.

• There is an improvement in the product

quality, though a couple organizations

mentioned that they have also had scenarios

where there was a negative impact.

• The organizations have not faced challenges

in meeting level of service requirements as

long as the discussions, implementation, and

testing of these requirements are being done

early.

• There are fewer defects at the end of the

lifecycle because they are found and fixed

earlier. The amount of rework required

depends on the stability of requirements,

however.

However, industry, as a whole, did not have

unified or strong insights for the remaining 3

questions in the survey.

The goal of the survey questions was to ask

industry if they noticed the reduced SEITPM costs

in Agile/DevOps environments and whether that

led to positive or negative effects in the final

products. In general, organizations and software

development teams noticed reductions in

Integration and Test (IT) costs most significantly.

Though the data suggests Program management

(PM) costs are also lower for Agile/DevOps

programs compared to Waterfall programs,

industry did not necessarily notice a decrease in

the PM activities. The organizations also noticed

mostly positive effects in product quality, defects,

and meeting level of service requirements. While

improvements were not necessarily noticed for

rework and maintainability, they also did not

necessarily worsen compared to Waterfall

programs.

Threats to Validity

This research study is based specifically on

Ground software systems from the Space Systems

Command (SSC) and Air Force. The programs

range from new development to modifications to

existing systems and vary in terms of

functionality provided and sizes. Given the nature

of the data used in this study, there are 2 threats

to validity:

1. Since the data and survey participants come

from Ground systems, the findings in this

study might not apply to other application

domains (particularly the SEITPM costs

estimating regression (Equation 2)). As

mentioned in the Future Work section

(below), a good future step would be to

analyze data across different application

domains/types to evaluate how generalizable

the findings are.

61 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

2. The Agile/DevOps programs in the datasets

used in this study have a considerably small

total cost/size range compared to the

Waterfall programs. Therefore, the results in

this paper might not hold for larger, more

complex programs using the Agile/DevOps

methodologies. Also mentioned in the Future

Work section (below) is the suggestion to

update this study when larger Agile/DevOps

data is collected to observe whether the

SEITPM costs are still lower than for the

Waterfall programs.

Comprehensive Conclusions

This research study consists of 2 parts:

1. Analyze the SEITPM costs between Agile/

DevOps and Waterfall programs

2. Survey industry to get their insights on the

SEITPM cost differences between Agile/

DevOps and Waterfall programs.

The first part of the study showed that the

SEITPM costs are about 30% less for Agile/

DevOps programs compared to Waterfall

programs and that this difference is statistically

significant. By looking at the individual activities

separately, the reduction in PM and IT costs

Agile/DevOps and Waterfall programs are

statistically significant, while the reduction in SE

costs is not.

Reduced SEITPM costs can imply insufficient

systems engineering and planning activities,

which can lead to the program’s inability to scale

to requirements, increased defects, reduced

maintainability of the code, and overall decline in

products’ quality. The second part of the research

study, surveying and having discussions with

industry, was designed to understand whether

the development teams are noticing a decline in

product quality as a side-effect to adopting Agile

and/or DevOps methodologies.

Discussions with industry concluded that the

software development teams usually did not

notice a major reduction in SEITPM costs and

activities for Agile/DevOps programs –

particularly for SE and PM. One thing to note here

is that the industry partners did not study their

own data prior to these discussions and were

asked to answer based on their intuition. This

suggests that there is not an active attempt to

reduce SEITPM activities because maintaining

product quality is essential. However, they did

note that the responsibilities, activities, and cost

reporting between software development and

SEITPM activities had blurred and overlapped

more than on Waterfall programs. In general, the

industry noticed either an improvement or

similarity in the product’s quality, number of

defects, rework, and maintainability compared to

Waterfall programs.

In answer to the question posed in the title of this

paper (are Agile/DevOps programs doing enough

systems engineering?), this research study found

that software development teams are able to and

have been doing enough engineering to produce

high quality products while utilizing Agile/

DevOps methodologies and reducing costs.

Future Work

There are several future steps that could enhance

this analysis further:

1. Perform a similar analysis on a dataset that

contains data points across the various

application domains to evaluate whether the

findings in this study are generalizable.

2. Reach out to more industry teams, not just

SSC’s industry partners, to get their

responses on the survey questions. With

more responses, we may be able to

understand if there are patterns that are

more common than others as well as all the

unique ways Agile/DevOps teams are

formed.

62 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

3. Collect annual SEITPM costs across multiple

Waterfall and Agile/DevOps programs to be

able to generalize how the SEITPM activities’

levels behave throughout the lifecycle and

how they differ between the 2 groups.

4. Update this analysis when more data on

Agile/DevOps programs is collected,

especially on larger programs. Since the

Agile/DevOps programs are significantly

smaller than many of the Waterfall programs

in the data used, it is unclear if the behavior

identified (that SEITPM costs are significantly

lower for Agile/DevOps programs compared

to Waterfall programs) will continue as the

Agile/DevOps programs grow in size and

difficulty.

Acknowledgements:

The author thanks the Air Force Cost Analysis

Agency (AFCAA) for sharing the data used in this

research study, and Raj Palejwala, Natasha

Edwards, Adriana Contreras, and Ernest Rangel

of the Space Systems Command (SSC) for

supporting and reviewing this study. The author

also thanks Matt Murdough, Miguel Aceves, and

Ben Kwok of Tecolote Research Inc. for

reviewing, providing suggestions, and guiding

this study from initiation to submission. This

study was funded by the Space Systems

Commands (SSC) under contract

FA8802-19-F-0005.

References:

Alstad, J., Hira, A., Brown, A. W., & Konrad, M. (2021). Investigating Causal Effects of Software and Systems

Engineering Effort. International Cost Estimating and Analysis Association Professional Development and

Training Workshop.

Bassil, Y. (2012). A Simulation Model for the Waterfall Software Development Life Cycle. International

Journal of Engineering and Technology, 2(5).

Beedle, M., van Benekum, A., Cockburn, A., Cunningham, W., Fowler, M., Highsmith, J., . . . Thomas, D. (2001).

Principles behind the Agile Manifesto. (Agile Manifesto) Retrieved November 5, 2021, from https://

agilemanifesto.org/principles.html

Ben-Zahia, M. A., & Jaluta, I. (2014). Criteria for selecting software development models. 2014 Global Summit

on Computer \& Information Technology (GSCIT) (pp. 1-6). IEEE.

Davis, G. (2000). Managing the test process [software testing]. Proceedings International Conference on

Software Methods and Tools. SMT 2000 (pp. 119-126). IEEE.

Hira, A., Boehm, B., Stoddard, R., & Konrad, M. (2018). Further Causal Search Analyses With UCC's Effort

Estimation Data. Acquisition Research Program.

Hira, A., Boehm, B., Stoddard, R., & Konrad, M. (2018). Preliminary Causal Discovery Results with Software

Effort Estimation Data. Proceedings of the 11th Innovations in Software Engineering Conference.

Hu, S.-P. (2001). Minimum-Unbiased-Percentage Error (MUPE) Method in CER Development. Third Joint

Annual ISPA/SCEA International Conference.

Manring, J. (2016). Maturing the Economic Aspects of Agile Development in the Federal Government.

International Cost Estimating and Analysis Association Professional Development and Training

Workshop.

63 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022

Are Agile/DevOps Programs Doing Enough Systems Engineering? Anandi Hira

Anandi Hira is currently a Data Scientist/Researcher at the Carnegie Mellon University Software Engineering
Institute (CMU SEI). Previously, Anandi performed several Agile and software cost estimation research projects
as a cost analyst at Tecolote Research Inc. She received her PhD in software cost estimation under Dr. Barry
Boehm at University of Southern California (USC), where she collected data and calibrated the COCOMO® II
model to include functional size metrics. Her research interests include software metrics and its application to
project management, software cost estimation, and software process improvement.

Markman, M. R., Ritschel, J. D., & White, E. D. (2021). USE OF FACTORS IN DEVELOPMENT ESTIMATES:

IMPROVING THE COST ANALYST TOOLKIT. Defense Acquisition Research Journal: A Publication of the

Defense Acquisition University, 28(1).

Russo, D. (2021). The Agile Success Model: A Mixed-methods Study of a Large-scale Agile Transformation.

ACM Transactions on Software Engineering and Methodology (TOSEM), 30(4), 1-46.

Seaver, D. (2018). Agile to DevOPS and its Impact on Estimation and Measurement. Joint IT and Software

Cost Forum.

Sinha, A., & Das, P. (2021). Agile Methodology Vs. Traditional Waterfall SDLC: A case study on Quality

Assurance process in Software Industry. 2021 5th International Conference on Electronics, Materials

Engineering \& Nano-Technology (IEMENTech) (pp. 1-4). IEEE.

Tracy, S. P., & White, E. D. (2011). Estimating the final cost of a DoD acquisition contract. Journal of Public

Procurement.

International Cost Estimating & Analysis Association

4115 Annandale Road, Suite 306 | Annandale, VA 22003

703-642-3090 | iceaa@iceaaonline.org

The International Cost Estimating and Analysis Association is a 501(c)(6) international non-profit

organization dedicated to advancing, encouraging, promoting and enhancing the profession of cost

estimating and analysis, through the use of parametrics and other data-driven techniques.

www.iceaaonline.com

Submissions:

Prior to writing or sending your manuscripts to us, please reference the

JCAP submission guidelines found at

www.iceaaonline.com/publications/jcap-submission

Kindly send your submissions and/or any correspondence to

JCAP.Editor@gmail.com

https://www.iceaaonline.com/publications/jcap-submission/
mailto:JCAP.Editor@gmail.com

