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Abstract: Improvement curves are one of the most common projection tools used by cost estimators. Their 

use is surrounded however by perils and pitfalls. Common errors include: the fallacy of "straight edge and 

graph paper" projection, the dangers of recovery slopes, failure to understand how development and 

production environments differ, and the dangers of using learning curve slopes to measure production line 

efficiency. This paper examines these potential pitfalls and proposes ways to avoid them. 

Introduction 

Improvement curves are one of the most common 

tools that cost estimators use to project future 

costs. Unlike a ladder or power tool bought at the 

hardware store, improvement curves do not 

come with warning labels. Perhaps they should: 

the consequences of misusing them can be quite 

significant. The stakes of a bad cost estimate can 

be high – millions or even billions of dollars in 

funding or profits may depend on decisions 

estimators make. Consider this paper in some 

sense a warning label: it identifies the perils and 

pitfalls of improvement curves and looks at 

common errors in projecting future costs based 

on the author's experience in the military aircraft 

industry.  

This paper will examine five potential perils: 

• the peril of straight-line projection  

• failure to account for the impacts of 

development versus production 

• the dangers of recovery slopes  

• carelessness about designating the first unit 

• dangers of using learning curve slopes to 

measure production line efficiency  

 

Peril: The Straight-Line Projection 

A common method of projection using the 

learning curve is to regress historical data, 

calculate the curve slope, then assume that same 

slope to project the cost of future work. “You are 

on an 83% learning curve,” the analyst announces 

as if he is stating an inviolable law of nature. “You 

should be on the same slope for future lots.” 

Proof that this slope is valid for future projection 

is typically buttressed by a statement of the 

regression line’s R2 – the higher the R2 the 

“better” the model and the more certain the 

future projection. This can be called the “straight 

edge and graph paper” school of estimating – 

projecting the future is no more difficult than 

drawing a best fit line on log-log paper and 

projecting that line through the number of units 

being estimated. 

What could be wrong with this? Empirical studies 

have demonstrated that this is in fact is not a 

reliable method to project future costs. Dutton 

(1984) cautioned: 

In general, the empirical findings 

caution against simplistic uses of 

either industry experience curves or a 

firm’s own progress curves. Predicting 

future progress rates from past 

historical patterns has proved 

unreliable. 

Similarly, Fox, et al. (2008) cited: 

Even with both an excellent fit to 

historical data (as measured by 

metrics like R2), and meeting almost 

all of the theoretical requirements of 

cost improvement, there is no 
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guarantee of accurate prediction of 

future costs.…[E]ven projections based 

on producing an almost identical 

product over all lots, in a single facility, 

with large lot sizes, and no production 

break or design changes, do not 

necessarily yield reliable forecasts of 

labor hours. 

Continuing, Fox, et al. writes: 

Out-of-sample forecasting using early 

lots to predict later lots has shown 

that, even under optimal conditions, 

labor improvement curve analyses 

have error rates of about +/- 25 

percent. 

The primary reason for this failure is that the 

learning curve is frequently not a straight line in 

log-log space over the product life cycle. The 

initial learning curve studies (Wright, 1936; 

Crawford, 1944) understood improvement 

curves as straight-line logarithmic functions. 

Within a few years, however, observers began to 

see improvement curves not as straight lines in a 

log-log space, but curvilinear functions that 

exhibited an “S” shape based on product and 

process maturity (Carr, 1946; Stanford Research 

Institute, 1949; Asher, 1956; Cochrane, 1960; 

Cochrane, 1968). 

The S-shaped improvement curve as commonly 

drawn is composed of three stages, captured 

graphically in Figure 1 (Carr, 1949; Cochrane, 

1960; Cochrane, 1968). 

The first stage, typically in the product 

development phase, shows high hours per unit 

and relatively flat improvement curve slopes. The 

limited degree of improvement is caused by an 

evolving engineering design and immature 

manufacturing processes. Part shortages disrupt 

the continuity of production. Scrap and rework is 

high, and there are typically a high number of 

engineering changes.  

In the second stage, typically during early 

production, the hours per unit decrease sharply 

along a relatively steep improvement curve. The 

production rate increases significantly from the 

relatively low delivery rates of the development 

Figure 1. Profile of the S-Curve (Notional) 
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phase. Engineering changes decrease sharply, 

while improvements in tooling and 

manufacturing processes are implemented. 

Manufacturing scrap and rework also decreases 

at a faster rate. Shortages decrease as the supply 

chain begins efficiently feeding the production 

line.  

In the third stage, production rates continue to 

increase to their maximum build rate. 

Manufacturing processes, tooling and engineering 

designs mature. Consequently, the pace of 

production improvements slow and the learning 

curve slope flattens in response. (Boone, 2021) 

The easiest way to understand the changing 

curve slope over time is to understand the 

definition of the learning curve itself. A Northrop 

publication from the 1960’s defines the learning 

curve as “the rate at which management 

identifies and solves problems in relation to 

design, methods, shortage of parts, inspection 

and shop education.” (Jones, 2001) Logically, the 

rate at which problems are solved will change 

over time – the “low hanging fruit” with the 

fastest payoffs will be picked first, leaving the 

more intractable and difficult problems to be 

solved later, or maybe not at all.  

What is the significance for our estimator? If he 

does not consider where he is in the product life 

cycle but blindly continues the historical slope, he 

may significantly overstate or understate future 

hours. (Reference Figure 2.) If his history is from 

the initial development stage, he may miss the 

steepening which typically occurs in the early 

production stage and overstate his estimate. If his 

history is from the early production stage, he may 

miss the flattening that occurs as product designs 

and manufacturing processes mature and 

understate his estimate. This does not mean that 

the analyst should never project a historical slope 

forward. Suppose the program has reached full 

production and its engineering and 

manufacturing processes are mature. In such a 

case it might be appropriate to project the next 

production lot by continuing the historical slope. 

But these decisions cannot be made carelessly 

Figure 2. S-Curve & Impact on Projections (Notional) 
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without understanding where historical 

experience falls along the product life cycle. 

But what about those sterling best fit statistics 

our analyst quoted earlier? True, many writers on 

learning curves recommend using best fit 

statistics as a criterion for choosing a particular 

learning curve slope and theory -- but as a 

criterion, not the sole criterion. Nussbaum and 

Mislick (2015) introduce numerous factors which 

should be considered in determining learning 

curve slopes including the nature and quality of 

production tooling; supplier competence and 

experience; expected number of design changes; 

length of part lead times; similarity of the product 

to other systems; and historical experience across 

the product lifecycle. These factors can and do 

change over the course of a production program.  

Using R2 blindly to justify continuing a straight-

line projection – on the basis that past is prologue 

– recalls the metaphor of driving a car by only 

looking through the rear-view mirror. Schumeli 

(2010) distinguishes sharply between 

explanatory models and predictive power. R2 is a 

statistic which explains the historical association 

between the variables of a model. It can make no 

justifiable claim about the future. As Schumeli 

notes, models which do a good job of explaining 

observed behavior may do a poor job of 

predicting future behavior.  

Continuing on this theme, Schumeli writes: 

Researchers report R2-type values and 

statistical significance of overall F-type 

statistics to indicate the level of 

explanatory power. …A common 

misconception in various scientific 

fields is that predictive power can be 

inferred from explanatory power. 

However, the two are different and 

should be assessed separately. …

Measures such as R2 and F would 

indicate the level of association, but not 

causation. …In general, measures 

computed from the data to which the 

model was fitted tend to be 

overoptimistic in terms of predictive 

accuracy: “Testing the procedure on the 

data that gave it birth is almost certain 

to overestimate performance.” 

(Mosteller and Tukey, 1977) 

Regardless of the historical R2, if a regression 

model ignores product and manufacturing 

maturity and their associated cost impacts, it will 

not do a good job of predicting the future. 

 

Solution: Using Multiple-Leg Curves Prevents 

“Straight Edge” Fallacy 

Without actual cost history, analogous program 

data combined with analysis of the programmatic 

factors previously referenced by Nussbaum and 

Mislick can be used to derive the projected 

learning curve slopes and breakpoints to project 

a S-shaped improvement curve. My earlier paper 

on improvement curves (Johnstone, 2015) 

suggests a methodology for early production 

when there are limited actual cost history. In this 

instance, let us assume there is sufficient 

historical data on the program in question, and a 

change in slopes can be inferred from a visual 

inspection of the data. 

There are several learning curve models which 

allow an S-shaped improvement curve to be 

derived (Miller, 1971; Jones, 2001). This paper 

suggests a discontinuous regression model which 

can be easily built from historical data. 

We start from our familiar improvement curve 

model: 

   (1) 

Where: 

y = Manufacturing hours per unit 

x = Cumulative units built to date 

α1 = Y-intercept, equal to theoretical first unit 

(TFU) hours 
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β1 = Rate of learning, such that 2β equals learning 

curve slope 

After hours per unit and cumulative quantities 

are converted to natural logarithms, this yields 

the following linear form:  

        (2) 

Kennedy (1992) outlines a method for using 

dummy variables to capture a change in the 

intercept and slope coefficients between two 

periods. To create a two-leg segmented learning 

curve, we introduce breakpoint unit T. Based on 

our a priori selection for T, data is separated into 

pre-break period 1 (x < T) and post-break period 

2 (x ≥ T). In addition, dummy variable D is 

created such that D is zero for period 1, and one 

for period 2. Product dummy variable Dx is also 

created such that Dx takes the value x in period 2 

but is 0 otherwise. This creates the regression 

equation: 

             (3) 

Equation (3) represents two separate cases. 

Where x < T, variables D and Dx are 0 and 

equation (3) reduces back to our standard 

improvement curve equation (2). But where x ≥ T 

and D takes the value of one, different intercept 

and slope values are introduced such that: 

             (4) 

Where: 

y = Manufacturing hours per unit (HPU) 

α1 = Y-intercept for leg #1, equal to theoretical 

first unit hours for leg #1 

α2 = Intercept adjustment for leg #2, such that α1 

+ α2 equals the Y-intercept for leg #2 

β1 = Rate of learning for leg #1, such that 2β 

equals learning curve slope #1 

β2 = Rate of learning for leg #2, such that 2(β1 - β2) 

equals learning curve for leg #2 

To demonstrate how such a curve can be built, a 

notional data set was constructed as follows. 

Based on a visual inspection of Figure 3, unit 101 

was chosen as the breakpoint T. To illustrate 

further, a table of selected units (Table 1) is 

displayed to show D, x and Dx. Finally, a sample 

output from Microsoft Excel (Figure 4) is shown 

after selecting the natural logarithm of hours per 

unit as the dependent variable y and regressing D, 

x and Dx as independent variables. 

We may interpret the results as follows: For units 

1-100, hours per unit are calculated using a 

theoretical first unit (TFU) of 5,192 hours and a 

slope of 74.3%. For units 101-300, hours per unit 

are calculated using a TFU of 1,497 hours 

(calculated as e(8.555 – 1.244) or α1+α2) and a slope of 

89.9% (calculated as 2(-0.428 + 0.274) or 2(β1 + β2)). 

This equation also has a high R2 of 0.97 – which 

significantly fits the historical data better than an 

equivalent single slope learning curve (R2 = 

0.925).  

It can be argued that the R2 of the best fit of a 

discontinuous line will always show some 

improvement, however miniscule, over the best 

fit of a single line. To test the statistical 

significance of the parameter values for period 1 

(pre-break) and period 2 (post-break), a Chow 

test can be performed in the format suggested by 

Kennedy (2002). By comparing the sum of 

squared errors (SSE) of the regressions for a 

Figure 3. Notional Data Set 
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Table 1. Notional Data Table (Partial). 
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single slope as opposed to a multiple leg slope, 

we can create an F-statistic of the form:  

             (5) 

 

The “combined” dataset represents the residuals 

for the single leg curve, while the “separated” 

dataset represents the residuals for the two-leg 

curve with its dummy variables representing pre- 

and post-break datasets, where K represents the 

number of parameters (including the intercept) 

of the combined dataset, T1 the number of 

observations in period 1, and T2 is the number of 

observations in period 2.  

The resulting test-statistic derived from equation 

(5) can be evaluated against a F-table at the 

desired level of error with K and T1+T2-2K 

degrees of freedoms. Our null hypothesis – that 

α1 - α2 = 0 and β1 - β2 = 0 – would conclude there is 

no significant structural break in the hours data 

to justify a two-leg curve. The alternate 

hypothesis – that α1 - α2 ≠ 0 and β1 - β2 ≠ 0 – would 

conclude just the opposite: there is a significant 

structural break in the data beginning at unit T. In 

our notional example (calculations not shown 

here but available upon request), we can reject 

the null hypothesis with a 99.9% confidence, 

concluding that our data does indeed show a 

break in the learning curve slope. 

As noted above, a high R2 – even one buttressed 

by a sufficiently high F-statistic for the Chow test 

-- does not guarantee the accuracy of the 

forecasts made from this equation. But this two-

leg model is more in line with the theoretical 

expectations set by the S-curve as well as 

historical experience, and therefore more likely 

to give us a better projection of future costs. 

 

Figure 4. Microsoft Excel Output 
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Peril: Development Slopes –  

Ignorance Is Not Bliss 

One of the conclusions of the S-curve theory is 

that improvement slopes in a development phase 

of a program will be relatively flat. This is 

because so many programmatic issues conspire 

together to prevent rapid improvement in costs. 

These include very high number of engineering 

changes, late parts usually due to late engineering 

release, tooling which requires rework, 

engineering errors, and the realization that 

manufacturing processes and part flows that 

work on the drawing board don’t necessarily 

work on the shop floor. It’s hard to overstate the 

chaos of the start-up of a manufacturing line. It’s 

a recurring theme on many programs that parts 

are installed in one station only to be ripped out 

and replaced just a few stations further down the 

line because of engineering changes. 

Yet in much of the learning curve literature this 

tends to be glossed over. In many surveys the 

data from the development units is either 

excluded, or data limitations prevent an analysis 

of development slopes. For example, in RAND’s 

2001 study of military fighter aircraft (F-14, F-15, 

F-16, F-18, AV-8B), Engineering and 

Manufacturing Development (EMD) data is 

included as a single aircraft lot, not as individual 

units. This prevents any analysis of a unique EMD 

slope. RAND’s conclusion that the average 

improvement slope for manufacturing is 80% 

therefore tells us little about the shape of the 

improvement curve in the development phase 

itself (Younossi, 2001). Similar issues plague 

other industry-wide studies (Resetar, 1991; Hess, 

1987; Levinson, 1966). However, insight into 

individual unit cost data is often only found in 

company-proprietary datasets. Only at the 

individual unit level does the slower rate of 

improvement for the development phase 

becomes apparent. 

So why does this matter? Because decisions 

which are made about the slope of the initial 

units can be critical to establishing the eventual 

production cost.  

Let us take a simple example. An estimator 

establishes the cost of a 300-unit program using 

an S-curve profile. For the ten-unit development 

phase, he projects using an 86% slope. When 

production begins at unit 11, the slope steepens 

to a 72% slope which is maintained until T-101, 

at which point it flattens to 82%. When the 

estimate starts running through the company 

approval cycle, however, the program manager 

objects. 

For one thing, the program manager doesn’t like 

the idea of a three-leg curve. Shouldn’t a learning 

curve be a single line? Moreover, a relatively flat 

development slope might appear uncompetitive 

to the source selection committee. The discussion 

goes on for several minutes, until the program 

manager suggests that the program use the same 

T-1 and T-300 costs as originally proposed but 

simply draw a single slope in log-log space 

between those two points. The program manager 

recognizes that the development phase will be 

initially understated, but it is only for ten units, 

after all, and it might put the company in a better 

competitive position. 

Figure 5 illustrates the program manager’s 

solution. Unfortunately, this solution does not 

just put the development cost estimate at risk. It 

also significantly understates the cost of the first 

three production lots. 

While it is true that the gap between the two 

approaches begins to close at Lot 3, the damage 

has been done. If the analyst’s original estimate 

was right, the first two production lots will 

overrun by 21% and 15% respectively. This could 

lead to adverse publicity, and the perception that 

the program is unable or unwilling to control its 

costs. It could also lead to a substantially 

degraded financial position for the company. If 

the original estimate is wrong – and history says 

the odds it will be too low are far better than 

being too high – then the damage to the program 

and to the company will be even greater.  
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Solution: Recognize That Choices Matter 

The solution here is relatively simple – be aware 

that choices about learning curve slopes during 

the development phase impact the estimate. 

These choices can be consequential whether the 

program follows a straight-line logarithmic 

function or an S-curve pattern.  

One word on the assumption that development 

programs always have relatively flat 

improvement slopes: It is true that you can 

sometimes find development programs which 

have a steep improvement curve. In the author’s 

experience, such an occurrence is typically due to 

an unusually high first unit cost, which in turn is 

driven by programmatic issues. Programs that 

push the manufacturing state of the art by 

introducing new or radical processes often show 

high first unit costs as companies struggle to 

implement these on the shop floor. This poor 

performance is typically followed by rapid cost 

improvement as issues are worked through. The 

Convair B-58 program, built in the 1950’s and 

1960’s, provides an example. Not only was the B-

58 the first supersonic bomber, but it introduced 

the first widespread use of honeycomb bonded 

structure (Hess, 1987). Issues with the 

fabrication of the panels and their subsequent 

installation led to a high first unit cost but a rapid 

movement down the learning curve for follow-on 

units (Large, 1974). These examples are the 

exception, however, and not the rule. 

 

Peril: The “Slippery Slope” – 

 Extraordinary Impacts and Recovery Slopes 

One of the most vexing situations for an estimator 

are those cases where there are sharp increases 

in unit cost over time -- but the increases are 

expected to be mitigated over time. These can be 

divided roughly into two camps: (a) “expected” 

disruptions, such as major engineering changes, 

Figure 5. Impact of Flatter Development Slope on Performance (Notional) 
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production breaks or work transfers between 

sites and (b) “unexpected” disruptions caused by 

unforeseeable circumstances. An example of an 

unexpected disruption would be a critical load 

part shortage which creates significant behind 

schedule and out of station costs. Both types of 

disruptions appear similarly on graphs of 

historical costs. Figure 6 shows an example of this 

kind of behavior, with a sharp initial increase in 

cost and an eventual asymptotic recovery to the 

underlying curve. 

Of course, ex ante we do not have the advantage 

of how and when this recovery will occur. Herein 

is our estimating dilemma. How might we deal 

with this issue?  

This is best illustrated by an example. At unit 150 

a severe part shortage produces a substantial 

behind schedule position with workarounds and 

significant out of station work. This situation (See 

Figure 7) is expected to end at some point but no 

one can say with confidence when.  

There are two often-taken approaches to this. 

The first is to simply ignore these units and 

project the cost as if these impacts had never 

occurred (See Figure 8). This is often justified by 

a claim that it represents where the company 

“should be” performing had the extraordinary 

impact not occurred. Whether the extraordinary 

impact is anticipated (e.g., driven by an 

engineering change or a production break) or 

unexpected (e.g., driven by part shortages or 

schedule problems), this procedure is never 

justified. Assuming away these type of cost 

increases may seem like a viable approach to the 

cost estimator. It is never one to the shop floor 

managers and directors who cannot deal with the 

world as we wish it was, but as it is. This 

approach often creates an insurmountable gap 

between current performance and what the 

analyst thinks the values “should be.” 

Figure 6. Disruption Example (Notional) 
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Figure 7. Illustration of Disruption (Notional) 

Figure 8. Recovery Curve – Doing Nothing 
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Unfortunately for the shop floor, that gap cannot 

simply be wished away.  

The second approach is to create a “recovery 

slope” which accepts the cost increases but 

returns unit cost near to what it would have been 

had the extraordinary impact not occurred. This 

is clearly a more realistic approach than the first. 

But how quickly should we forecast recovery? 

Frequently, an arbitrary number of units is 

chosen, and the recovery is then forecast over 

that number of units (See Figure 9). Sometimes, 

the choice of units is based on historical 

analogies. Sometimes it is based on a point in 

time when the manufacturing schedule recovers 

to the baseline. Sometimes it is simply picked out 

of the air. All these have problems. Our historical 

analogies may not be apt, or we may not have the 

data. Cost improvements usually lag schedule 

improvements, especially since schedule 

improvements are often made by increasing 

manpower or overtime or both. Bottom line, it is 

very easy to make unrealistic shop projections 

which cannot be achieved. 

 

Solution: Calculating Learning Setback and 

Projecting Forward 

A more reasonable approach is to take the break-

in point of the disruption and set back the unit 

position on the learning curve (Fowlkes, 1963). 

For example, prior to the part shortage we were 

on an 85% slope. The first unit to feel the impact 

of the shortage represents approximately 850 

hours per unit – equivalent to position 100 on 

that same 85% slope. To forecast the recovery, 

we regress on the learning curve back to unit 100 

and forecast future units on the same pattern as 

established in the past, i.e., the next five units are 

equivalent to the cost of units 101 thru 105, etc. 

on an 85% improvement slope. 

Figure 9. Recovery Curve - Point of Recovery 
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This produces a “scallop” in the overall 

improvement curve (See Figure 10). True to the 

learning curve pattern, the most improvement is 

seen in the initial units after the disruption, with 

the unit-to-unit decreases slowing as we move 

farther away from the initial disruption. In this 

case, we recover asymptotically to the old cost 

curve – that is, we never achieve the same hours 

per unit we would have anticipated had the 

disruption not occurred. But we come closer and 

closer to it until eventually the difference between 

the two becomes marginal.  

The use of setback in the learning curve is widely 

accepted for production breaks and engineering 

changes (Anderlohr, 1968; DCAA, 1994; Smith, 

1986). But there is sometimes resistance to using 

it in other scenarios.  

This resistance is largely based around the idea 

that learning – and the loss of learning – 

exclusively centers around the operator on the 

shop floor. In the case of engineering changes (the 

operator must learn a new way of building the 

part) and production breaks (there is a significant 

turnover on the floor with employees receiving 

new assignments), there is clearly an impact to the 

body of knowledge the shop floor operator has 

accumulated. But our common use of the term 

“learning curve” often misleads us into believing 

that cost improvement only results from repetitive 

operations by the mechanics. It is more accurately 

called out as a “cost improvement curve.” 

In his paper on production breaks, Anderlohr 

defined five elements of learning: (1) operator 

learning, (2) supervisory learning, (3) tooling, (4) 

continuity of production and (5) manufacturing 

methods (Anderlohr, 1969). Yet the improvement 

that comes from the repetition of tasks by shop 

personnel accounts for slightly more than 20% of 

the total cost improvement. The rest of “learning” 

Figure 10. Recovery Curve – Setback 



Projecting Future Costs with Improvement Curves: Perils and Pitfalls   Brent M. Johnstone 

77 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

comes from other sources. (Jones, 2001). If we can 

adjust our position on the improvement curve for 

negative impacts to operator or supervisor 

learning, surely it is legitimate to adjust it for 

negative impacts to the other three areas as well? 

Viewed from this perspective, it should be plain 

that, for example, an interruption to the supply 

chain due to late parts – which in turn creates part 

shortages, workarounds and behind schedule 

conditions – represents a retrograde to the 

existing improvement curve and can be fairly 

represented by a setback on the learning curve.  

In the author’s experience, this produces the most 

realistic and reasonable recovery slope and the 

one most achievable by the shop floor. But there 

are cases where a more aggressive approach may 

seem appropriate. Smith (1986) makes a common 

argument: “The firm is reexperiencing, not 

experiencing; they are going down a cost 

improvement curve they have been over before 

and should be better equipped to solve the 

problems the second time around so some method 

of accelerating recovery…may be useful”. We can 

modify the setback methodology shown above and 

assume that we forecast the new units not on the 

same pattern seen in the past – the 85% 

improvement slope – but a slightly more 

aggressive one. In this case, an 82% slope has 

been used (See Figure 11). 

This allows us to completely return to the hours 

per unit projected on the old cost curve. (In fact, 

had we continued the projection another ten or 

twenty units, the recovery slope would fall 

underneath the old cost curve, giving us a lower 

per unit value.) The more aggressive the slope 

assumption, the faster the interception point will 

be achieved. However, we can easily fall in the 

same trap as the earlier case where we selected an 

arbitrary number of units and drew a line to 

intercept the old cost curve. If 82% was an 

appropriate slope, why not 80%? Why not 78%? 

Why not 75%? It is easy to rationalize the answer 

Figure 11. Recovery Slope – Accelerated Setback 
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we (and our management) want to hear. Cochrane 

(1968) suggests a methodology for calculating an 

accelerated recovery, but it too requires an 

arbitrary choice of an acceleration factor which 

might be difficult to justify. The best guide would 

seem to be prior experience, but often we cannot 

find an analogy which exactly correlates to the 

situation we are estimating.  

In short, projecting recovery slopes from 

disruptions is fraught with potential risks and the 

greatest care must be taken with doing so. When 

calculating a recovery slope, it is always best to 

review your assumptions and projections with the 

shop floor to make sure what you have mapped 

out can in fact be realized. 

 

Peril: Being Careless When Establishing the 

First Unit 

This example is drawn from an actual proposal. 

Values referenced below are notional.  

A small aircraft pylon used to carry mission 

equipment required subassembly work. For the 

first thirty units, the Special Projects organization 

produced it on an 84% learning curve. At unit 31, 

the task was transferred from Special Projects to 

the regular Production department, who would 

produce the next order for 400 units.  

The cost analyst (fortunately not the author!) 

proposed that the first Production unit would 

have the same hours per unit as the last unit 

produced by Special Projects. He also proposed 

the same 84% learning curve slope going forward. 

However, for projection purposes, he treated the 

first Production unit as unit one on the learning 

curve. The estimator apparently believed he was 

setting the unit costs back on the learning curve. 

But while he reset the cumulative unit count, he 

did not adjust the hours at unit #31 to something 

higher.  

Figure 12 shows the consequences. Case A 

represents what the Production department 

expected to see when the contract was awarded. 

Figure 12. Illustration of Misidentified First Unit (Notional) 
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Case B represents what they found in the estimate 

– an estimate that was approximately half of what 

they expected! 

By treating T-31 and subsequent units as if we 

were restarting the learning curve back at unit 1, 

we have restarted the 16% cost reduction that 

occurs every time the number of units doubles. 

This significantly accelerates the rate of learning – 

which was not the intention of the estimator. GAO 

(2020) refers to this as “disjoint theory” (treating 

the first production unit as T-1 and restarting the 

curve) as opposed to “sequential theory” (treating 

the first production unit as the last development 

unit plus one). There may be times where disjoint 

theory is appropriate, but in this case the analyst 

simply did not realize what had been done. 

Fortunately, Production was able to mitigate the 

impact by holding a series of lean events and 

substantially restructuring the production process 

– as it turned out, there were significant 

inefficiencies in the existing production process 

which were subsequently eliminated. However, 

this happy accident cannot be counted on in the 

future to save an estimator from his mistakes. 

 

Solution: Take Care and Graph, Graph, Graph! 

Fortunately, the solutions are relatively simple. As 

a rule, analysts should always graph their learning 

curve results – preferably in both a log-log and an 

arithmetic space. Graphing the actual cost history 

as well as the projected hours per unit would have 

quickly surfaced the problem. In addition, examine 

your takeoff point for projections and its position 

on the curve carefully. Seemingly insignificant 

decisions can have profound impacts on the 

numbers.  

 

Peril: Steep Curves = Efficiency? 

The author has heard proposal evaluators 

frequently assert that a flat learning curve is proof 

of manufacturing inefficiency. Its counterpart is 

often asserted as well: a steep learning curve 

proves the efficiency of a manufacturing 

operation. In fact, the slope of a learning curve by 

itself does not prove that a factory is efficient or 

inefficient. A hypothetical example will 

demonstrate this. 

Company A assembles widgets; it has 

demonstrated an 80% learning curve over 1,000 

units. Company B builds a similar but not identical 

product and demonstrates a 90% learning curve 

over the same range. There has been no transfer of 

manufacturing knowledge or personnel between 

the two companies. Which company is more 

efficient?  

Many cost estimators would immediately answer 

Company A since it has the steeper learning curve. 

But this ignores the reasons why Company A had 

such a steep learning curve. This is quickly 

demonstrated by comparing the performance of 

the two companies on an hours per pound basis 

(See Figure 13). This shows Company A’s high first 

unit cost, exceeding 40 hours per pound. Upon 

investigation, it turns out this high T-1 was driven 

by late engineering release, inadequate tooling, 

late material, and the oversizing of shop floor 

crews to recover manufacturing schedule.  

Company B on the other hand had its engineering 

released on time, which allowed its tooling 

program to build high quality tools and deliver 

them to the floor when needed. On-time 

engineering allowed the supply base to deliver its 

parts on time, which in turn allowed Production to 

size its crews efficiently and still maintain the 

production schedule. Its first unit cost was almost 

half of Company A’s.  

Both companies ended the 1,000th unit at the 

same hours per pound. But over the course of 

those thousand units, it took Company A almost 

25% more hours to produce its product.  

A steep learning curve can demonstrate a strong 

dedication to lower costs and continuous 

improvement. It can also indicate the necessity to 

recover from poor performance and 
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mismanagement on the earliest units. “[T]he more 

room there is for improvement,” noted Fowlkes 

(1963), “the more improvement there is to be 

expected.” Without further investigation, it cannot 

be determined from the numerical value of a 

learning curve slope alone which of these two 

cases is true. 

 

Solution: Avoiding the Facile Conclusion 

There is a widespread perception among cost 

estimators that relatively flat learning curves are a 

symptom of production inefficiency, and -- by 

implication – that relatively steep slopes are proof 

of manufacturing efficiency. In fact, as our 

example demonstrates, just the opposite may be 

the case. The learning curve slope alone cannot 

tell us if a manufacturing operation is efficient or 

not. Further analysis and understanding behind 

the underlying trends are necessary. 

Unfortunately, there is no easy way out. 

Conclusions:  

The quantity of books, articles, and academic 

research published about learning curves is 

astonishing. Literally hundreds of publications 

have been released since T. P. Wright’s original 

1936 article. Authors have suggested a variety of 

models and approaches: Wright’s cumulative 

average model, Crawford’s unit curve model, the 

Stanford B-curve, DeJong’s incompressibility 

model and Cochran’s S-curve are only a few 

examples. (Wright, 1936; Stanford Research 

Institute, 1949; DeJong, 1957; Cochran, 1960; 

Cochran, 1968) And yet within this wealth of 

material, there are relatively little guidance on 

what not to do. A new driver should not be handed 

a key to the sports car in the driveway before 

being previously schooled on speed limits and 

stop signs. 

In the introduction, this paper was offered as a 

warning label to be attached to the improvement 

curve. Each of the five situations outlined 

Figure 13 
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represents a potential pitfall which can entangle 

the cost estimator and transform the learning 

curve from a useful tool to a danger to himself 

and others. The negative consequences of a bad 

estimate – on company profits and government 

funding – can be severe. 

Unfortunately, most learning curve training 

rarely addresses these issues. It is content to 

show the basic calculations for Wright and 

Crawford curves, offer some advice on midpoint 

calculation and show a methodology for dealing 

with major engineering changes or production 

breaks. But it rarely goes much beyond these 

areas. It simply assumes estimators will find out 

about those other matters “soon enough.” They 

will – but they might take someone else down 

with them in the process. 

Cautionary tales rarely make compelling reading. 

After all, who among us actually reads the 

warning labels attached to the products we buy? 

But in this case, questioning long-held premises 

or putting in an extra half hour of analysis may 

yield unexpected benefits. By obeying the speed 

limits of estimating, our hypothetical driver and 

his sports car in the driveway might make it back 

home in one piece. 
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