
90 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

Theory of Complex Work       Harry T. Larsen 

Theory of Complex Work 

Harry T. Larsen 

Background 

The manufacturing learning curve graph depicts 

the direct labor hours per unit of production 

plotted in its manufacturing sequence. When 

plotted with log/log scales, learning curves tend 

to follow a linear downward trend as shown in 

figure 1.           

The  power law, y(x) = a xb, has been found to 

describe the learning curve’s trend, with y(x) = 

hours(unit), x = sequential unit number, a = the 

hours at unit one, and b the slope exponent. The 

power law is transformed to a linear form by 

taking its logarithm: ln(y) = ln(a) + b ln(x). To 

summarize a learning curve’s statistics, a least 

squares regression can be performed on the 

logarithms of learning curve data, (ln(y1), ln(1));  

(ln(y2), ln(2));  .  .  . , (ln(yn), ln(n)). The regression 

estimate of a is termed the theoretical number 

one.  By convention, the slope of a learning curve 

is 2b. The learning curve is sometimes 

transformed to a cumulative average:  

 

 

For this discussion, the hours per unit description 

will be used. 

From an examination of historic learning curve’s 

labor hours in the airframe industry, some 

attributes are apparent.  

The slope of a long sequence of end item’s labor 

hours is very seldom steeper than 70.7%, b= -.5.  

When new work, e.g., a new design, for part of an 

end item is introduced at a unit, the hours for the 

new work are approximated by y(x) = anew xb, 

with x beginning at unit 1. The replaced work is 

removed via y(x) = areplace xb, with x at its current 

value.  With anew = #1 hours for the new work 

and areplace = the #1 hours for the replaced work. 

This produces a spike in the learning curve. 

Processes earlier in the manufacturing process 

have flatter slopes than do the later activities.   

In the aircraft industry major and final assembly 

curves often steepen as they progress, while 

fabrication curves typically are less steep.   

The learning curves of very large quantities of 

end items flatten. 

The learning curves of products with large 

aggregates of hours per unit tend to be smoother 

than learning curves of fewer hours per unit.  

The probability distributions about regressions of 

power law to labor hour data are approximately 

log-normal.  (This is true for both learning curve 

hours per unit as well as Cost Estimating 

Relationships (CERs) for labor hours.) 

There is a large cost variation around estimates 

for complex projects, particularly those that 

involve new technology. 

Although the power law describes broadly the 

learning curve’s log-linear behavior, it does not 

offer insight into the causes or mechanisms of its 

realization. Nor does it suggest means by which 

its labor hours per unit may be affected .   

 

Theory of Complex Work   

This model of work is based on the concept of a 

task. 

The construction of a product is accomplished by 

the successful completion of a set of tasks.  

A task is an activity that has a criterion of success.   
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A task is accomplished through repetitive trials.   

The trials are repeated until the criterion of 

success is met.   

A trial is modeled as a binomial event, with a 

probability of success p(t), with t = trial.  

At the completion of each trial, p(t), is increased 

by an amount (1 - p(t)) dl, where dl is a constant 

and dl << p(t).   

      p(t+1) = p(t) + (1 - p(t)) dl 

The time duration of each trial is a constant. 

Thus, a task's labor hours are proportional to the 

number of trials necessary to successfully 

complete the task. A task may be a part of a larger 

interrelated group of tasks.  The outcome of a 

task’s successful trial may cause another task’s 

success criterion to change, requiring it to be 

redone. The successful completion of a product’s 

tasks produces a unit of the learning curve.   

To model this process, at each trial, p(t) is 

compared to x ~ U(0,1), an event from a uniform 

distribution. If x < p(t) the trial is a success and 

the task for that unit is completed, otherwise the 

trial is repeated. Trials for the next unit’s task 

begin with the p(t) from the preceding completed 

task. The sequential completion of tasks produces 

the learning curve.   

This is a stochastic process, with inherent 

uncertainty. To produce an estimate, it is 

implemented as a Monte Carlo system, producing 

Probability Density Functions, PDFs. From those 

PDFs various statistics can be calculated, e.g., 

median, mean, and standard deviation. Or, if the 

estimate is to support a decision option, the PDF 

can be bifurcated.  

Fig 1 depicts a learning curve created by such a 

sequential completion of tasks. Its initial 

probability, p(0), is .03 while dl equals .001, with 

400 tasks and a trial time of 1 hour. 

 

Predictions 

The expected value of the number of trials to a 

successful completion is approximately 1/p(t). 

Thus, with p(t) small, the change in p between 
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successful trials is about dl/p(t). If this value is 

small the number of trials to successfully 

complete a set of tasks is a negative binomial 

distribution. A negative binomial distribution 

typically is defined as the discrete probability 

distribution of the count of failed trials up to a 

successful trial in a set of experiments. However, 

for this application, the count includes the 

successful trial.    

The mean of a negative binomial distribution is:   

(1) u = T N / p, where N is the number of 

tasks, and T is the time per trial for a task. 

Its standard deviation: 

(2) σ = T (N (1-p)) .5 / p,  

The relative standard deviation is: 

 σ / u = (T (N (1-p)) .5 / p) / (T N / p)  

 or 

(3)   σ /u = ((1-p) / N).5 

The number of tasks is:  From (3)   

(4)     N = (1-p) / (σ/u)2 

From equation (1) it can be 

seen that a project’s expected 

hours are proportional to the 

size of the project in terms of 

the number tasks, N, trial 

duration, T, and the difficulty of 

the project measured by the 

inverse of a trial’s probability of 

success, p. Thus, a project may 

have high labor hours due to 

either its task content or its 

difficulty.   

From equation (2), for p << 1, 

the standard deviation of labor 

hours is proportional to the 

square root of the number of 

tasks and the inverse of a 

trial’s  probability of success, 1/

p.  Consequently, as illustrated by the relative 

standard deviation formula (3), a project with a 

higher task content, while holding p constant, will 

have a relatively lower standard deviation. Hence 

its depiction on log/log scales becomes smoother 

as the project’s task content increases. 

Conversely, for a project that increases in size   is 

due to increased difficulty (smaller p), its 

sequential standard deviation remains directly 

proportional to the increased labor hours and 

does not collapse with the larger project size. 

Thus, we should expect that large projects that 

advance the state of the art   will have high 

relative standard deviations, while projects that 

do not will have low relative standard deviations.  

For small p the relative standard deviation, σ/u, 

is a function of N.  Figure  2 depicts   two learning 

curves, one with 200 tasks and one with 40 tasks.  

The relative standard deviation of the 40 task 

curve is (200/40).5 times the 200 task curve. 

For very large quantities a learning curve may 

flatten. When p approaches 1 the hours per unit 



93 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

Theory of Complex Work       Harry T. Larsen 

approaches the product of the number of tasks 

and the hours per trial. 

Figure 4 illustrates that p(0) and dl determine 

the hours for the first unit. As p(0) is increased 

the learning curve has a lower initial cost but 

remains asymptotic to a slope of 70.7% until p(t) 

approaches 1. 

A combination of learning curves with differing p

(0) values can produce a curve with a shallower 

slope. 
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More realistically, a distribution of p(0) values can 

produce a learning curve with a small hump followed 

by a flattening.  Figure 6 is a histogram of a 

lognormal distribution of 200 p(0) values, with a 

mean of .233 and a standard deviation of .133. Figure 

7 is the resulting learning curve of 200 

corresponding tasks beginning with those p(0) 

values. A log-log regression through unit 500 of the 

1000 units shown has a slope of .822, a slope in the 

range commonly seen in aircraft learning curve 

history.  

 If a design change is introduced to an existing 

production process, it is added at the initial 

probability of the task, p(0). The work replaced is 

removed at its current probability, p(x).  

In figure 8 the yellow line represents 70% of the 

tasks, which are unchanged. The red line scaled from 

one shows the new tasks. The orange, beginning at 

unit 200, shows the sum of new tasks and the 

continued unchanged tasks.   
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Feedback may occur between its tasks. When, for 

example, in an assembly task if a part does not fit due 

to a design or manufacturing error, the part may be 

reworked in the assembly activity to fit, but also, a 

design or specification change may be fed back to the 

fabrication area. The design change is treated as a 

new design, setting that task’s current p to p(0) as 

shown in figure 6, but for a single task.  Figure 9 

shows a simulation of two sets of 150 tasks, 

fabrication and assembly. Design changes are fed 

back from assembly to fabrication. In this example, 

the likelihood of a fabrication task’s p being reset to 

p(0) is proportional to the product of .0015 and the 

ratio of the number of trials for the preceding unit in 

assembly versus those in fabrication. Without 
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feedback, the fabrication curve would follow the 

trend of the assembly curve. 

The Derivation of Model Parameters 

For a system that cannot be transformed into a 

form suitable for the application of a regression, 

the author would normally use Excel Solver to 

find the least squares solution.  Such a solution 

requires that gradients be calculated for each 

parameter at each step of the search. For a Monte 

Carlo system producing a partially random 

output a very large number of model executions 

would be required. Probably not computationally 

feasible, at least on a personal computer. 

Fortunately, a deterministic formulation of the 

model that very closely approximates the 

stochastic version is possible.  

The model calculates labor hours to complete a 

task by iterating p(t+1) = p(t) + (1 - p(t)) dl 

until x ~ U(0,1) is less than p(t). The average 

number of iterations for x < p(t) is 1/p(t). Thus 

deterministically,  

p(unit+1) ~ p(unit) + (1 /p(t)) (1 - p(t)) dl, 

where p(unit) is the average probability during a 

unit’s trials.  The hours(unit) are equal to T N / p

(unit).  

Figure 1 shows the calculation. For example for 

unit 2: p(unit 2) = .178  = .156 + 6.4 * (1 - .156) 

* .004.   

Hours(unit 2) = 1126 = 2 * 100  / .178. 

The parameters of Table 1 generate the learning 

curve in figure 10.  Both the deterministic and 

stochastic versions are shown. 

The parameters of the model are N, T, p, and dl. N 

and T cannot be separately estimated from just 

the hours(unit) data. However formula 3, σ/u = 

((1-p) / N).5, provides a means of calculating N.  

N = (1-p) / (σ/u)2 . It requires the calculation of 

σ/u, the relative standard deviation.  One method 

is to calculate the sequential variation around the 

expected value of the hours per unit. Then correct 

the resulting standard deviation for the 

additional variation introduced by the sequential 

differencing.  That correction factor is the square 

root of .5. An approximation of the relative 

standard deviation is thus: σ /u = .707 STDev( 2 

( hours(nunit+1) - hours(unit)) / (hours

(nunit+1) +hours(unit)) taken over the range of 

units. 

Once N is estimated, Excel’s Solver can be used to 

find the p(0), dl, and T that minimize the 

difference between the actual and 

deterministically modeled learning curve.  

Of course, if the actual learning curve has 

dynamics beyond those modeled by the negative 

binomial distribution, those dynamics should be 

modeled. The modeling of design change 

feedback into manufacturing was introduced 

Table 1   
Deterministic 

fit 
Stochastic 

model 

  p 0.156 0.150 

  dl 0.004 0.004 

  T 2.06 2.00 

  N 97.2 100 

  

Unit p(unit) 
Deterministic 

Model 
Iterations 

1 0.156 1284 6.4 

2 0.178 1128 5.6 

3 0.196 1021 5.1 

4 0.213 942 4.7 

5 0.227 881 4.4 
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earlier. It can be included in the Table 1 

formulation by resetting the p(unit) values to p

(0), in proportion to the ratio of design changes 

to the total designs at each unit. 

 

Time Domain Formulation 

During the design of a product, there may be 

information flows between engineering tasks. But 

unlike a production line, these new requirements 

are applied to the design tasks themselves rather 

than to a subsequent design. Modeling the 

equation, p(t+1) = p(t) + (1 - p(t)) dl, in the time 

domain for both engineering and manufacturing 

allows these information flows to interact within 

and between the design tasks and factory tasks. 

To show these effects a small airplane program is 

modeled. It produces 300 aircraft over 7 years.  

Its design effort begins 3 years before the first 

factory complete aircraft. Table 2 shows 805 

engineering tasks in this simulation each with an 

associated task set in manufacturing. 

The engineering tasks are organized into a Work 

Breakdown Structure of 5 elements, and the 

corresponding manufacturing tasks into three 

cost elements. For example, there are 250 

Structure design tasks. One hundred twenty-five 

of those designs are built in fabrication. 

With modeling in time, design problems 

encounter in minor assembly and major assembly 

can be fed back to engineering where the design 

is changed and then sent on to the manufacturing 

elements. This creates a sustaining engineering 

effort as well as an increase in fabrication and 

minor assembly hours. In table 3 shows there is 

a .0006 probability that a trial in a major 

assembly or minor assembly task will cause a 

design/fabrication task to be redone, with an 

additional .0006 that a major assembly trial will 

cause a design/minor assembly task to be redone. 

This generates design changes proportional to 

the hours worked in manufacturing. After the 

design change is completed it is sent on to its 

corresponding manufacturing element where its 

p is set to p(0).  

Table 2 

Tasks   

WBS/CE Structure Subsystems Avionics Systems Eng Test Total 

Fabrication 125 23 15 8 10 181 

Minor Assy 100 69 45 15 20 249 

Major Assy 25 138 90 52 70 375 

Total 250 230 150 75 100 805 

Table 3 

  Feedback Parameters                 

WBS Structure 
Subsystem

s 
Avionics Systems Eng Test Cost       

Structure 0.05 0.05 0.05 0.05 0.05 Element 
Fabricatio

n 
Minor Assy Major Assy 

Subsystem
s 

0.05 0.05 0.10 0.15 0.20 
Fabricatio

n 
0 0.0006 0.0006 

Avionics 0.05 0.05 0.10 0.15 0.20 Minor Assy   0 0.0006 
Systems 
Eng 

0.05 0.05 0.10 0.15 0.20 Major Assy     0 

Test 0.05 0.05 0.10 0.15 0.20         
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Also, within engineering, .05 of Subsystems 

completed tasks produce a design change in 

Structure, while .15 of Systems Engineering 

produce design changes in Avionics, and .20 of 

Test produce design changes in Test.  These 

changes are treated like repetitive units in 

manufacturing, that is, the probability, p, is 

iterated from its last successful completion.  

To complete the description of the airplane 

program table 4 shows the engineering and 

manufacturing initiating parameters. Figure 11 

has the aircraft production schedule. Its blue line 

shows the beginning of the fabrication effort for 

each unit. The time domain model is programmed 

to expend labor hours as needed to complete 

each unit on time. Thus, the planned complete 

and complete lines are nearly coincidental.  This 

is of course unrealistic; but was done to keep this 

paper focused on the learning curve.  

Figures 12, 13, and 14 show four simulations, 

black, red, yellow, and blue, each with an 

increased level of feedback.  

The black lines show the engineering and 

manufacturing headcounts and learning curve 

when there is no feedback.  The engineering 

effort is completed on 6/1/26 on the planned 

schedule. The learning curve slope is 71.6%. 

The red lines have feedback initiated only in 

manufacturing. This feedback produces design 

changes in engineering, generating sustaining 

engineering. These design changes are fed back 

Table 4 

Program Parameters                   

WBS Structure 
Subsystem

s 
Avionics 

Systems 
Eng 

Test 
Cost 

Element 
Fabricatio

n 
Minor Assy Major Assy 

Start 10/01/23 10/01/23 10/01/23 06/01/23 12/01/24 
#1 flow 
months 

21 21 21 

Planned 
complete 

12/01/25 12/01/25 12/01/25 06/01/25 09/01/26 
Flow red. 

slope 
0.94 0.94 0.94 

p(0) 0.003 0.003 0.003 0.003 0.003 p(0) 0.003 0.003 0.003 

dl 0.00001 0.00001 0.00001 0.00001 0.00001 dl 0.00001 0.00001 0.00001 

Hours/
task 

3 3 3 3 3 Hours/task 0.50 0.75 1.25 

Tasks 250 230 150 75 100 Tasks 250 272 283 
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into manufacturing resetting its task’s current  

p(t) values to their p(0). The increased resources are 

seen in the red line of the manufacturing headcount 

chart and in the flattening of the learning curve. 

The yellow lines show the effect of including the internal 

engineering feedback. 

In a project that stretches the engineering capability, due 

to a new technology, inexperience, or other causes, the 

design process may have errors. These errors can be 

expected to show up in the later stages of the first 

aircraft’s production and during the flight test period.   

The blue lines illustrate the effect of those errors being 

doubled between 4 months prior to the first aircraft’s 

completion and the completion of the engineering test 

effort, depicted as the box in figure 11. The simulated 

learning curve has the hump often seen in these 

circumstances. It is followed by a steep decline and then 

a transition to a more typical curve. 

 

Uncertainty 

When this stochastic process is implemented as a Monte 

Carlo system the predictions are in the form of 

Probability Density Functions, PDFs. In figures 12 - 14 

there are two fundamental causes of variation, the 

uncertainty of the trial outcomes and the feedback 

processes.   
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The histograms in figures 15 – 18 are from 1000 

iterations of the time domain model. Figures 15 

and 17 show the PDFs of unit 1 and 300 hours 

with only the trial outcome uncertainty, p(t) > x 

~U(0,1). Figures 16 and 18 show the PDFs 

including the feedback processes; while holding 

all other input parameters constant. Feedback 

from design changes increases the variation as 

the project progresses. Figure 18 shows about 

twice the variation and hours as the 

corresponding simulation without design 

changes, figure 17.   

All the distributions are close to lognormal. 

Fixing the Monte Carlo model’s random number 

generator to a single sequence for the first 6 

years of the simulation produces learning curves 

with its uncertainty beginning at unit 96, shown 

in Fig 19, with expanded scales in figure 20. 

It is notable that the uncertainty does not grow as 

one might expect from a typical random walk 

model. When the iterations of p(t), and thus labor 

hours, to a successful completion are greater than 

1/ p(t), p(t) becomes larger than expected.  For 
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the next unit’s iterations that larger probability 

reduces the expected number of iterations. Thus, 

a slight autoregressive dynamic is produced.           

Information 

The model links work to information.  Figure 22 

shows the bits per successfully completed unit for 

the two learning curves in figure 21. Information 

is calculated as: 

 where t is the first trial of unit and n is the 

number of trials to the successful completion of 

unit. Both curves have 1000 tasks and a trial time 

of 1 hour.  The black curve, with p(0) = .01 and dl 

= .00017, has a slope of  .717.  The blue curve, 

with a p(0) = .15 and dl = .003 was chosen to 

illustrate a curve with a hump that flattens as p

(large) approaches one.   

From an information perspective, work can be 

thought of as the effort required to resolve an 

uncertainty. The relationship between a 

product’s complexity, that is uncertainty to be 

resolved, and the work to resolve it is a subject 

for information theory. Connecting work with 

information allows the mathematics of 

information theory to be brought to bear on the 

nature of work. 

 

Summary  

The iteration of p(t+1) = p(t) + (1 - p(t)) dl 

describes much of the dynamics of the learning 

curve and work in general.  With N, the number of 

tasks, and p, a measure of difficulty, both the size 

and complexity of a project can be modeled. 

While these parameters can be derived from 

actual learning curves. By embedding the 

iteration of p(t) into a feedback system the 

impact of the broader work system can also be 

evaluated.  

The model p(t+1) = p(t) + (1 - p(t)) dl states 

that, given a measure of knowledge p(t), with a 

trial that knowledge will likely be increased in 

proportion to the remaining unknown.  While the 

constant of proportionality is on the order of p

(0) squared.  This process creates the learning 

curve.   

It also explains: 

Why initial development curves are flat. In some 

circumstances, the interaction of engineering and 

manufacturing can create a loss of control in the 

factory.  Prediction is necessary for effective 

control.  

Why learning curves eventually flatten. 

Knowledge of the process is fully gained. 

How processes with a range of process 

knowledge can have a flatter slope. The sum of a 
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range of slopes creates a learning curve with a 

flatter slope. 

The impact of design changes. The probability of 

success returns to p(0). 

Why assembly slopes are generally steeper than 

fabrication.  Feedback introduces a stream of 

design change into the earlier stages of 

manufacturing. 

Estimates ultimately are intended to support a 

decision. Some decision criteria are a linear 

consequence of the cost estimate. For those, the 

expected value provides sufficient information. 

Others are options, a split of the estimates PDF, 

and the estimate’s PDF is required. This model 

fulfills that requirement.  
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