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Introduction 

The Air Force is preparing for the future of air 

superiority with the introduction of new aircraft 

such as the B-21, T-7, E-7, and the Next 

Generation Air Dominance (Department of the 

Air Force, 2021). These programs need a credible 

and accurate life cycle cost estimate for the 

acquisition to be successful. In the Department of 

Defense (DoD), flyaway costs constitute most of 

the procurement costs in aircraft acquisition: 

prime mission equipment, systems engineering 

and program management, test and evaluation, 

warranties, engineering changes, nonrecurring 

startup costs, and government-furnished 

equipment (Department of Defense, 2022). Thus, 

accurately estimating flyaway costs is a key 

component in establishing a realistic acquisition 

program baseline.  

Cost estimating relationships (CERs) for 

airframes or flyaway costs are typically derived 

using the 100th production unit. When the 100th 

production unit is not available, that value is 

derived via a cost improvement curve (e.g. a 

learning curve utilizing cost data rather than 

hours). This 100th production unit is therefore 

referred to as an UC100, the T100 unit cost, or 

simply T100 (Department of Defense, 1992). A 

T100 flyaway cost, therefore, looks specifically at 

the flyaway costs associated with the T100 unit.  

This research is the largest aircraft regression 

study to date for recurring T100 flyaway costs. 

The study employs and analyzes historical data to 

create two CERs. These CERs utilize data prior to 

production and identify key cost drivers. The 

results from this paper can be used by program 

managers or estimators early in the aircraft 

acquisition life cycle as a cross-check to other 

methods that might estimate the T100 flyaway 

cost. 
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T100 flyaway costs and can be used by cost analysts as a cross-check in early estimations. 
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(2) 

Background 

Flyaway costs occur during the production phase 

of an aircraft, also known as the investment 

phase (Mislick & Nussbaum, 2015). During this 

phase, a build-up technique is often used for cost 

estimation because actual cost data is available. 

However, when calculating unit costs such as the 

T100, a cost estimator should use a cost 

improvement curve (CIC) (Government 

Accountability Office, 2020). A CIC addresses the 

phenomenon that as tasks are repeated, learning 

occurs making the task more efficient and 

therefore cost less (Department of Defense, 

2022). A CIC measures the reduction in terms of 

cost, while the more colloquially known learning 

curve measures the reduction in terms of hours. 

This analysis employs the CIC construct. 

There are two leading theories on CICs: Unit 

Theory and Cumulative Average (CUMAV) 

Theory. Both theories address the learning 

phenomenon previously mentioned, but unit 

theory assumes a reduction in unit costs while 

CUMAV assumes a reduction in cumulative 

average costs. Since T100 costs are unit costs and 

it is the predominant approach amongst Air Force 

practitioners, the unit theory cost improvement 

curve is the one we adopt. While a CIC is useful 

for determining the production unit costs of an 

aircraft, it should only include recurring costs to 

prevent skewing the results (Department of 

Defense, 2022). Therefore, the term flyaway cost 

is in reference to recurring flyaway costs as 

opposed to total flyaway costs. 

To understand how the T100 flyaway cost is 

ascertained with actual aircraft production data, 

we guide the reader through the following 

process. First, normalize the data to remove the 

effect of escalation to constant price (CP$) via the 

Produce Price Index (PPI) 3364, which details 

price changes in aerospace products and parts 

(Bureau of Labor Statistics, 2022). Normalizing to 

CP$ for a CER is a best practice according to the 

2021 OSD-CAPE Inflation and Escalation Best 

Practices for Cost Analysis. One then calculates the 

average unit cost (AUC) by dividing the lot’s 

recurring flyaway costs by the total number of 

units produced (see Equation 1). 

Equation (2) shows how the lot midpoint (LMP) 

for Lot 1 is calculated. 

 

For all subsequent lots, the LMP is calculated by 

adding the first (F) and last (L) unit number in a 

lot, plus two times the square root of F times L, 

then divide the total by four (Equation 3). 

 

 

A linear regression is then performed via the 

natural logs of the AUC and LMP to estimate the 

flyaway cost for any unit, taking into 

consideration cost improvement curve and 

economies of scale. Equation (4) shows this 

where ln(LMP) (the explanatory variable) is 

regressed onto ln(AUC) (the response variable). 

 

Back-transforming from log space, we arrive at 

the customary cost improvement curve (5) 

YX = A * Xb     (5) 

Where: 

Yx = the flyaway cost of unit X 

A = the theoretical cost of unit one (T1) 

X = the unit number 

b = the theoretical slope of the cost improvement 

curve 

Once these calculations are made and the cost 

improvement curve equation is computed, one 

evaluates the equation at X = 100 or Y100. This is 

the flyaway cost of unit 100 or the T100 flyaway 

cost. This process results in an approximation of 

the recurring flyaway cost at the theoretical 100th 

unit while considering the learning effect. This 

(1) 

(3) 

(4) 
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process is what generated the response data we 

obtained for our study. 

Next, we turn to prior published sources to 

identify possible explanatory variables for the 

CERs. Unfortunately, we could find no prior 

studies that predicted recurring T100 flyaway 

costs (nor any type of flyaway cost for that 

matter). The most similar study conducted was 

published in a series of papers by RAND from 

1972 to 2001 and investigated cost drivers for 

different elements of aircraft airframes. To cast a 

broader net for research related to flyaway costs, 

we looked for studies focused on production 

costs; but it resulted in only one report from 

1991, which created cost models for production 

support elements. Altogether, we explored five 

prior studies. Table 1 lists and summarizes these 

studies. For our purposes, they serve as a 

reference to consider which explanatory 

variables might be predictive of T100 and the 

development of the CERs within this article. 

 



27 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023 

Cost Estimating Relationships for Recurring T100 Flyaway Costs   Kyrie M. Rojo, et al 

METHODS 

Data 

We acquired the data analyzed in this article 

through the Cost Assessment Data Enterprise 

(CADE), as compiled by the Air Force Life Cycle 

Management Center (AFLCMC). Contractor, 

quantity, and cost data, such as the lot costs 

required to calculate T100 flyaway costs, were 

collected via the Cost Data Summary Reports 

(CDSRs), also known as 1921s, within CADE’s 

Defense Automated Cost Information 

Management System (DACIMS). Aircraft weight 

data was obtained by accessing CADE’s Data & 

Analytics application. Speed data was provided 

by the AFLCMC who compiled the data from past 

studies. 

Once all the initial data was captured, the number 

of aircraft in the dataset was filtered based on 

availability of specific aircraft data. For an aircraft 

to have complete data and be included in the 

finalized dataset it had to contain at least one 

weight statement, aircraft cost data, and engine 

cost data. For aircraft, engines typically have their 

own production and 1921s separate from the 

aircraft itself, which was limited in CADE. The 

AFLCMC provided most of the engine cost data 

analyzed in this dataset, but this limitation 

excluded several aircraft, most of which are 

retired. 

We developed two CERs. The first CER 

investigated all identified explanatory variables 

but excluded EMD (Engineering & Manufacturing 

Development) costs as a possible explanatory 

variable. The reason EMD costs were excluded is 

due to timing. By excluding EMD costs, the 

practitioner can use the CER prior to MS B. The 

EMD cost variable was reinstated for the second 

CER. However, inclusion of this variable for the 

second CER reduced the number of aircraft 

available for CER development. Consequently, we 

created a separate data inclusion criterion to 

investigate EMD costs as a cost driver. The total 

number of aircraft available for both the first and 

second CER is reflected in Table 2. Because they 

are a different commodity, helicopters are not 

considered in this article. 

Regarding possible explanatory variables in the 

development of the CERs, these had to meet the 

following criteria: 

1. Must be available pre-production (all 

variables have data available pre-EMD except 

for EMD costs). 

2. Must be logically related to cost. 

3. Must have accessible historical data. 

Inspiration for these variables stemmed from the 

previous studies shown in Table 1, in addition to 

logically associated variables with reoccurring 

flyaway cost or variables that are speculated to 

perhaps affect these costs. Table 3 lists the 

potential independent variables considered along 

with their descriptions. Tables 4 and 5 further 

delineate some of these explanatory variables. 

Table 2. Aircraft Inclusion and Exclusion Criteria. 

Inclusion/Exclusion Criteria 
Aircraft 
Removed 

Remaining 
Aircraft 

Aircraft in CADE with Weight Statements Available   516 

Aircraft with Aircraft Cost Data Available 329 187 

Aircraft with Engine Cost Data Available 105 82 

Total Aircraft in Dataset for First CER   82 

Aircraft with EMD Costs 23 59 

Total Aircraft in Dataset for Second CER   59 
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Table 3. Potential Explanatory Variables. 

Variable Name Description 

ST System Type 
Ten dummy variables that represent the different system types of aircraft in this 
dataset. Table 4 provides a breakout of each one. 

Qt Quantified Units 
Total number of aircraft in a lot production that was applied to calculate T100 
flyaway cost.  

AF Air Force 
Dummy variable where 1 = aircraft produced solely for the Air Force and 0 = it 
was not. 

EC Engine Count The total number of engines on an aircraft. 

Ct Contractor 
Six dummy variables that represent the current contractors who developed and 
produced the aircraft in this dataset. See Table 5. 

EW Empty Weight The weight of the aircraft (in pounds) minus fuel, ordnance, and personnel. 

AUW 
Airframe Unit 
Weight 

Empty weight (in pounds) minus propulsion, avionics, and government 
furnishings and equipment. 

Speed Max Speed Maximum speed (in knots). 

AD1 Aircraft Density 1 Airframe unit weight divided by empty weight: (AUW/EW) 

AD2 Aircraft Density 2 
Empty weight minus airframe unit weight then divided by empty weight: (EW-
AUW)/EW 

Stealth Stealth Dummy variable where 1 = aircraft has stealth technology and 0 = it does not. 

Legacy Legacy Dummy variable where 1 = legacy aircraft and 0 = modern aircraft. 

EMD* EMD Costs EMD costs for the mission design series (MDS) A-model  

*Will not be tested in first regression analysis due to number of aircraft with this data, and when in a 
program’s lifecycle this data is available. 

Table 4. System Type by Aircraft. 

System 
Type 

Variable 
System Type 

Number in 
Dataset 

Aircraft in Dataset 

ST1 Attack 11 
A-10A, A-3A/B, A-4A, A-5A/RA-5C, A-6A, A-6E, A-7A/B, A-7D, 
EA-6B, S-3A, S-3B 

ST2 Bomber 11 
B-1B, B-2A, B-36A, B-47A, B-52A, B-52D, B-57A, B-58A, B-66B, 
RB-57D, RB-66B 

ST3 
Electronic 
Attack 

1 ES-3A 

ST4 Fighter 33 

F-117A, F-22A, F-35A, F-35B, F-100A, F-101A, F-102A, F-104A, F
-105A, F-106A, F-111A, F-14A, F-14D, F-15A, F-15C, F-15E, F-
16A/B, F-16C/D, F-16C, F-4B, F-4C, F-4D, F4D-1, F-4E, F-4F, F-4J, 
F-5E, F-5F, F-80A, F-80C, RF-4B, RF-4C, RF-4E 

ST5 Fighter/ Attack 4 EA-18G, F/A-18A, F/A-18C, F/A-18E/F 

ST6 Patrol 2 P-3C, P-8A 

ST7 Reconnaissance 2 E-3A, E-6A 

ST8 Trainer 3 T-38A, T-39A, T-45TS 

ST9 
Transport/ 
Tanker 

12 
C-123B, C-130A, C-130J, C-131A, C-141A, C-17A, C-27J, C-5A, C-
5B, HC-130J, KC-135A, MC-130J 

ST10 UAV/Drone 3 MQ-1C, MQ-9A, RQ-4A 
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For the Stealth dummy (dichotomous) variable, 

five aircraft were considered to have stealth 

technology: B-2A, F-117A, F-22A, F-35A, and F-

35B. These were coded as a ‘1’, while the other 77 

aircraft were coded a ‘0’. The reasoning was 

stealth aircraft might have higher reoccurring 

flyaway cost due to technological complexity. 

For the Legacy dichotomous variable, a similar 

coding logic was employed. The Legacy variable 

is intended to capture the age and complexity of 

an aircraft and is defined by whether the weapon 

system is completely integrated or not. Legacy 

aircraft do not consist of an integrated weapon 

system, but rather separate components 

contained within an aircraft weapon system. If an 

aircraft at the Mission Design (MD) level was 

defined as a legacy aircraft, then all modifications 

of this aircraft were also defined as a legacy 

aircraft because their technology is based on 

legacy aircraft. For example, the C-5A was 

produced in the 1960s when weapon systems 

were not fully integrated and is therefore a legacy 

aircraft. The C-5B on the other hand was 

produced in the 1980s when weapon systems 

were being fully integrated, but this is still based 

on the same C-5A aircraft, and is therefore also a 

legacy aircraft. 

There are 46 legacy aircraft in this dataset, with 

first flight dates that range from 1944 – 1968 at 

the MD level. Alternatively, modern aircraft are 

wholly integrated weapon systems whose 

production began in the 1970s. There are 36 

modern aircraft in this dataset, with first flight 

dates that range from 1972 – 2007. Identification 

of whether an aircraft is legacy or modern was 

verified by a subject matter expert from the 

AFLCMC, and the breakdown between the two 

classifications is displayed in Table 6. 

Table 5. Current Contractor Breakdown. 

Contractor 
Variable 

Contractor (Year Founded) 
Number 

in Dataset 
Aircraft in Dataset 

Ct1 Boeing (1916) 8 
B-47A, B-52A, B-52D, E-3A, E-
6A, EA-18G, KC-135A, P-8A 

Ct2 
General Atomics Aeronautical 
Systems, Inc (1955) 

2 MQ-1C, MQ-9A 

Ct3 General Dynamics (1899) 4 
F-111A, F-16A/B, F-16C/D, F-
16C 

Ct4 Leonardo Aviation (1948) 1 C-27J 

Ct5 Lockheed Martin (1995) 6 
C-130J, F-22A, F-35A, F-35B, 
HC-130J, MC-130J 

Ct6 Northrop Grumman (1994)  1 RQ-4A 

Table 6. Aircraft Breakdown by Legacy vs Modern. 

Legacy vs Modern Aircraft 

Legacy Aircraft 

A-3A/B, A-4A, A-5A/RA-5, A-6A, A-6E, EA-6B, A-7A/B, A-7D, B-
36A, B-47A, B-52A, B-52D, B-57A, RB-57D, B-58A, B-66B, RB-66B, C
-123B, C-130A, C-131A, KC-135A, C-141A, C-5A, C-5B, F-100A, F-
101A, F-102A, F-104A, F-105A, F-106A, F-111A, F4D-1, F-4B, F-4C, F-
4D, F-4E, F-4F, F-4J, RF-4B, RF-4C, RF-4E, F-80A, F-80C, P-3C, T-
38A, T-39A 

Modern Aircraft 

A-10A, B-1B, B-2A, C-130J, HC-130J, MC-130J, C-17A, C-27J, E-3A, E
-6A, ES-3A, EA-18G, F/A-18A, F/A-18C, F/A-18E/F, F-117A, F-14A, F-
14D, F-15A, F-15C, F-15E, F-16A/B, F-16C, F-16C/D, F-22A, F-35A, F-
35B, F-5E, F-5F, MQ-1C, MQ-9A, P-8A, RQ-4A, S-3A, S-3B, T-45TS 
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There are over 1,000 weight statements in the 

CADE library for approximately 516 different 

mission design series (MDS). This means for 

certain MDSs, such as the F-117A and P-3C, there 

is only one weight statement. While other MDSs, 

such as the A-10A and C-17A, have over a dozen 

weight statements. Out of the 82 aircraft in this 

dataset, 53 have only one weight statement in 

CADE and 29 have more than 1. For the EW and 

AUW variables listed in Table 3, if there was more 

than one weight statement available then the 

weight statement reflecting production units that 

occurred around the 100th unit was selected. 

However, to investigate when in a program’s life 

cycle weight is the most predictive of T100 

flyaway costs, four additional variables are 

analyzed: EW1 and AUW1 which represents data 

from the first (or only) weight statement for an 

aircraft, and EW2 and AUW2 which represents 

the last. 

Two other explanatory variables, Air Force (AF) 

and engine count (EC), are added for possible 

CER consideration for exploratory purposes. Of 

the 82 aircraft, 50 or approximately 61% were 

Air Force aircraft. Therefore, we were interested 

to see if there might be a difference between AF 

and non-AF aircraft with respect to reoccurring 

flyaway cost. With respect to engines, there are 

five different engine counts an aircraft can 

possess as observed in our dataset: 1, 2, 4, 6, or 8. 

The most common engine count is 2, 

representing exactly half of the dataset (41 out of 

82). For the 1, 4, 6, and 8 engine aircraft, we 

observed counts of 21, 16, 2 and 2 occurrences, 

respectively. 

 

Statistical Analysis 

The descriptive and inferential analysis 

documented in this article was accomplished 

with JMP® Pro 15; and a 10% level of significance 

is used for most statistical tests. We adopt the 

method of ordinary least squares (OLS) to build 

the two CERs featured in this article and utilize a 

stepwise regression approach. Stepwise 

regression is an automatic process that screens 

potential independent variables to determine 

their best combination in predicting the 

dependent variable (McClave et al., 2017). If, 

while assessing the descriptive statistics, an 

independent variable appears to take on a 

different form (i.e., non-linear), then the 

alternative form is also examined in this stepwise 

process. 

During this stepwise procedure, we utilize a 

mixed approach with the p-value threshold set to 

0.1 for both inclusion and exclusion. To maintain 

the overall experimentwise error rate, we 

incorporated the Bonferroni Correction to set 

individual significance at 0.1/(number of 

significant explanatory variables). The response 

variable was recurring T100 flyaway costs. The 

possible explanatory variables consisted of all the 

dummy variables and continuous variables, as 

denoted earlier in this paper; as well any other 

noted patterns in the descriptive analysis, which 

preceded the inferential analysis. 

To assess model validity, we assessed normality 

of residuals via the Anderson Darling test and 

constant variance via the Breusch-Pagan test. 

Both tests used a 0.05 level of significance. For 

model diagnostics, we assessed multicollinearity 

via the Variance Inflation Factor (VIF), outliers 

via studentized residuals, and overly influential 

datapoints via Cook’s D. Although we recognize 

that OLS is robust against deviations from 

normality and constant variance (Kutner et al., 

2004), we needed to determine if the finalized 

stepwise models were statistically sound and 

valid for practitioner usage. 

In addition to testing assumptions and running 

diagnostics, the model must also be validated. 

The metrics employed in this article to explain 

the model’s performance are the R2, adjusted-R2, 

and PRESS R2 statistics. Because R2 will always 

increase with the addition of a new independent 

variable, the adjusted R2 corrects this drawback 

by considering the number of explanatory 
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variables included in the model; and therefore 

will only increase if the new explanatory variable 

adds to the predictability of the model. The 

predicted residual error sum of squares (PRESS) 

R2 statistic is recommended in evaluating a 

model’s prediction ability (Naval Center for Cost 

Analysis, 2018). When PRESS R2 is compared 

with the adjusted R2, results can determine if the 

model is over-fitted and disproportionally 

reflecting model behavior. 

Lastly, we performed a sensitivity analysis on the 

finalized stepwise CERs to investigate what 

would occur if we took an austere approach of 

removing any data point that might be an outlier, 

influential data point or cause residuals to 

deviate from normality and/or constant variance. 

The point of this sensitivity analysis was to not 

make the models ‘appear’ more significant than 

they are (as denoted by a very high R2), but to 

ascertain if any other explanatory variable would 

be statistically significant, if we took such a 

myopic view. Our sensitivity analysis confirmed 

our finalized two CERs, which we now present. 

 

 

RESULTS 

Descriptive 

Table 7 presents the summary statistics of the 

T100 flyaway costs for our sample. All dollar 

amounts are in Constant Price (CP)$21. Given the 

difference between the mean and median, we 

expected to see large flyaway costs associated 

with some aircraft. As shown in Figure 1, some 

aircraft with a 4-engine count generally have a 

much higher threshold of recurring T100 flyaway 

costs than any other engine count, including the 

four aircraft with six and eight engines. Delving 

deeper, Figure 2 depicts this is particularly true 

for heavier, 4-engine aircraft, as the seven 

heaviest aircraft had four engines. The 

highlighted datapoints in Figure 2 suggest a 

subgroup of heavy, 4-engine aircraft might have 

Table 7. Summary Statistics of 
Recurring T100 Flyaway Costs. 

Summary Statistics of Dependent 
Variable (in $K and CP$21) 

N 82 

Median $26,914.42  

Mean $51,297.87  

Std Dev $60,533.16  

IQR $44,118.01  

Figure 1. Boxplots of Recurring T100 Flyaway 
Cost vs Engine Count. 

Figure 2. AUW (Left) and EW (Right) Distributions of Aircraft in Study Sample. 
Highlighted Points Reflect the Seven Heaviest And Possessed Four Engines. 
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high reoccurring flyaway cost compared to other 

aircraft in the sample study. Consequently, we 

created a dummy variable as another explanatory 

variable for stepwise regression to consider in 

building the two CERs. Table 8 lists the criteria 

used for an aircraft to be considered in this 

cohort, or subgroup. As we shall demonstrate 

shortly, this cohort became the most significant 

driver of reoccurring flyaway costs for aircraft. 

The aircraft in this cohort consisted of the E-3A, E

-6A, B-2A, B-1B, C-17A, C-5A, and C-5B. 

 

CER Model 1 

Tables 9 and 10 present the statistically 

significant explanatory variables when not 

including or knowing EMD costs associated with 

an aircraft. All six variables are significant at the 

comparisonwise error rate with each p-value less 

than 0.0167 (0.1/6). Although all the various 

definitions of weight tested individually 

predictive, stepwise selected EW as the most 

significant, given the very high VIF scores (in 

excess of 5000) of the weight explanatory 

variables when included together. With PRESS R2, 

adjusted R2, and R2 being relatively close to each 

other, this result gives an impression of a stable 

model and suggests CER1 is approximately 85-

89% predictive of reoccurring flyaway costs. 

Equation 6 depicts this model for a practitioner to 

use, mindful of the ranges applicable to prevent 

model extrapolation. Those applicable ranges are 

given in Table 11. Note the coefficients are in $K. 

 

CER Model 2 

The process by which we produced the second 

CER is identical to the first in both initial findings 

and the robustness check/diagnostics. The initial 

stepwise regression for the second model was 

analyzed with all the same explanatory variables 

from Model 1, plus EMD information. Tables 12 

and 13 present our results. Both explanatory 

Table 8. Inclusion Criteria for Cohort. 

Criteria (truncated) 

1. AUW > 111,000 lbs 

2. EW >162,000 lbs 

3. Engine Count = 4 

Table 9. CER Model 1. 

Variable Estimate t Ratio p-value 

Stealth 93115.58 9.03 <.0001 

Cohort 90941.47 6.26 <.0001 

Empty 
Weight 

0.336918 5.49 <.0001 

ln(Speed in 
knots) 

23984.99 4.08 0.0001 

Fighter 
Aircraft 

-25872.6 -3.73 0.0004 

Legacy -18477.4 -3.68 0.0004 

Table 10. Metrics for CER Model 1. 

Metric  Value 

R2 0.8919 

Adjusted R2 0.8833 

PRESS R2 0.8529 

Table 11. Boundaries for Applying CER Model 1. 

Variable Minimum Maximum 

Cohort – Airframe 
Unit Weight 

111,899 lbs 310,484 lbs 

Cohort – Empty 
Weight 

162,228 lbs 356,797 lbs 

Cohort – Engine 
Count 

4 4 

Empty Weight  2,183 lbs 356,797 lbs 

Ln(Speed in knots)  
Ln(150 knots) 
= 5.0106  

Ln(1434 knots) 
= 7.2682 
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variables are significant at the comparisonwise 

error rate with each p-value less than 0.05 (0.1/2). 

PRESS R2, adjusted R2, and R2 are relatively close 

to each other, which again gives the impression of 

a stable model and suggests the second CER is 

approximately 86-88% predictive of reoccurring 

flyaway costs. Equation 7 depicts this model for a 

practitioner to use, mindful of the ranges 

applicable to prevent model extrapolation. Those 

applicable ranges are given in Table 14. Note the 

coefficients are in $K. 

 

CONCLUSION AND TAKEAWAY 

 

We initially identified 13 explanatory variables 

(shown previously in Table 3) to be investigated 

in the development of two CERs for reoccurring 

flyaway costs. [Note that Table 3 has two umbrella 

variables: system type (ST) and contractor (Ct). 

The individual STs and Cts are not listed in Table 

3. Rather, the full set of ST and Ct variables are 

provided in Tables 4 and 5 respectively]. 

Combining the full set of categorical variables, ST 

and Ct, with the initial explanatory variables of 

Table 3 resulted in 27 variables. Then, to account 

for the timeline of the different weight statements 

for empty weight (EW) and airframe unit weight 

(AUW), four additional weight variables were 

added: EW1, EW2, AUW1, and AUW2. Ultimately, 

after visually assessing the descriptive statistics 

for trends, two final variables were added, the 

natural log of Speed (ln(S)) and Cohort. Therefore, 

the total number of explanatory variables 

considered in developing the two CERs finalized at 

33. 

Recall that CER 1 does not include the total EMD 

cost variable. Out of the 32 remaining variables 

analyzed, six were selected for the final CER 1 

model: Cohort, Stealth, ln(Speed in knots), Fighter 

Aircraft, Legacy, and Empty Weight. All the 

variables in this model have information available 

prior to Milestone B, making it applicable well 

before flyaway costs are incurred. With respect to 

interpretation of Equation (6), the intercept value 

of -$115,363.70 is simply a baseline and is 

uninterpretable for we never observed an 

instance where all the x variables took on the 

value zero. 

The remaining coefficients describe how each 

explanatory variable effects recurring T100 

flyaway costs. If an aircraft is a member of the 

cohort, it increases reoccurring flyaway costs by 

$90,941K on average. If an aircraft has stealth 

technology, it increases costs by $93,115K. For 

each unit increase in the natural log of an aircraft’s 

speed (in knots), flyaway costs increase by 

$23,984K. If an aircraft is a fighter system type, it 

decreases costs by $25,872K on average. If an 

Table 12. CER Model 2. 

Variable 
Estimate 

($K) 
t Ratio p-value 

Cohort 142033.5 14.28 <.0001 

EMD 0.004471 9.81 <.0001 

Table 13. Metrics for CER Model 2. 

Metric  Value 

R2 0.8814 

Adjusted R2 0.8771 

PRESS R2 0.8623 

Table 14. Boundaries for Applying CER Model 2. 
Dollars are in $K and CP$21. 

Variable Minimum Maximum 

Cohort – Airframe 
Unit Weight 

111,899 lbs 310,484 lbs 

Cohort – Empty 
Weight 

162,228 lbs 356,797 lbs 

Cohort – Engine 
Count 

4 4 

EMD Costs $36,793.92  $41,667,947.73  
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aircraft is identified as a legacy aircraft (which will 

not be the case for any future aircraft), then it 

decreases flyaway costs by $18,477K. Lastly, each 

pound increase in an aircraft’s empty weight 

increases flyaway costs by $0.3369K (or $336.90). 

With respect to the explanatory variables’ relative 

weighting and percentage effect on flyaway costs, 

Table 15 shows those details. 

All 33 explanatory variables (including total EMD 

cost) were analyzed for the development of CER 

Model 2. Of these, only two were selected for the 

final equation, Cohort and EMD costs. While 

Cohort can be determined near Milestone B in the 

acquisition lifecycle, EMD costs can only be 

incurred near Milestone C, which is still before the 

production phase when flyaway costs occur. 

However, this proximity does make the 

applicability of Model 2 more limited than Model 

1. With respect to interpretation of Equation (7), 

again the intercept is simply a baseline. For the 

remaining two coefficients, if an aircraft is a 

member of the cohort, it increases the average 

reoccurring flyaway cost by $142,033K. Lastly, 

each dollar increase in EMD costs increases 

flyaway costs by $0.00471K (or $4.471) – four and 

a half fold. All dollars reflect CP$21 amounts. With 

respect to the explanatory variables’ relative 

weighting and percentage effect on flyaway costs, 

Table 16 shows those details. 

A significant discovery in this analysis was the 

identification of the variable Cohort, which was 

the only variable included in both CERs. 

Additionally, as seen in Tables 15 and 16, it has 

the greatest impact on the response for both 

models. This subgroup was initially identified in 

several scatter plots as a cluster of seven aircraft 

and included the E-3A, E-6A, B-2A, B-1B, C-17A, C-

5A, and C-5B. While their complete criteria are 

shown in Tables 11 and 14, they are essentially 

amongst the heaviest aircraft in the dataset with 

four engines. Future aircraft that will likely be 

members of this cohort and whose flyaway cost 

estimate will benefit from this finding include the 

B-21. 

Another major takeaway from this study is the 

identification of a proxy for complexity, and how 

strong a variable EMD is in predicting T100 

flyaway costs. Yes, Stealth combined with Legacy 

were shown to be a significant proxy for 

complexity, but their effects are greatly 

diminished if total EMD costs are accessible. In 

fact, the moment EMD costs are introduced into 

stepwise regression analysis, five previously 

significant variables (Empty Weight, Stealth, ln

(Speed), Fighter Aircraft, and Legacy) drop out, 

revealing the predictive power of EMD with 

respect to reoccurring flyaway costs. So, even if a 

practitioner chooses neither CER 1 nor CER 2 as a 

crosscheck for estimating flyaway costs, we 

advocate capturing complexity in their estimate 

and incorporating EMD costs, if available. 

In summary, this paper fills a gap in the cost 

estimator toolkit. While previous efforts by RAND 

and others have developed useful CERs for 

airframes and other components, no CERs 

previously existed for recurring flyaway costs. 

With new aircraft, such as the B-21, T-7, E-7 and 

Next Generation Air Dominance on the horizon, 

accurate cost estimates will be of paramount 

importance. The CERs developed in this paper are 

a small step in helping achieve more awareness 

regarding flyaway costs. Thus, we humbly suggest 

practitioners employ them as a cross-check to 

their primary methodologies. 

Table 15. Contribution Percentage by Explanatory 

Variable % Effect on CER 1 

Cohort 24% 

Empty Weight 22% 

Stealth 21% 

ln(Speed in knots) 12% 

Fighter Aircraft 12% 

Legacy 9% 

Table 16. Contribution Percentage by Explanatory 

Variable % Effect on CER 2 

Cohort 59% 

EMD 41% 
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