
105 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Simplifying Software Sizing with Simple Function Points

Carol Dekkers

Dan French

Abstract: Professional software cost estimators recognize that one of the most elusive, yet fundamental

components of parametric software cost estimation is the size of the software under development. While

many methods have been proposed over the years to quantify software size, none has been as stable or

independent of changing technologies as functional size measurement (FSM), first introduced at IBM in the

late 1970’s. FSM and its unit of measure, function points, derives software size based on a standardized

assessment of its functional requirements. Today, the most popular and globally accepted FSM approach is

the International Function Point Users Group (IFPUG) Function Point Analysis (FPA) version 4.3.1. In

October 2021, the IFPUG released a new and standardized approach called Simple Function Points (SFP)

version 2.1, based on an IFPUG 4.3.1 compatible approach developed by Dr. Roberto Meli of Italy in 2010.

This paper introduces the SFP methodology, demonstrates its use, and highlights the challenges and

opportunities for software cost estimators who need to estimate software size from high level software

requirements. We will also explore the key differences between SFP and traditional IFPUG FP, including

guidance for cost estimators using Function Point measures as the basis for their software cost estimates .

Introduction and brief history of IFPUG

function points:

The IFPUG function point analysis methodology

was developed by IBM in the 1970’s in response

to customer concerns that newer, more efficient

software languages (such C, SQL and Pascal)

resulted in a smaller volume of computer code

(quantified at the time by the number of Source

Lines of Code or SLOC) and thus, appeared to be

of less “value” to their customers. With the advent

of higher-level languages, developers found they

were increasingly experiencing cost and schedule

overruns for software projects based on SLOC

and sought to find a better means of assessing

software size, independent of development

technology.

To address this issue, IBM assembled a team of

software engineers, led by Allan Albrecht, with

the goal of developing an alternative software

size measure, agnostic of programming language

and platform. The first iteration of “Function

Points” was formally presented in Albrecht’s

paper “Measuring Application Development

Productivity,” at an IBM Guide/Share conference.

The industry response was so positive that the

rest, as they say, is history.

In 1984, the International Function Point Users

Group (IFPUG) was founded as the not-for-profit

custodians of Function Point sizing methodology

and the first IFPUG Function Point Counting

Practices Manual (CPM) version 1.0 followed in

1986.

The IFPUG Function Point methodology has

slowly evolved, and became standardized, over

the years; but the original Albrecht-based

components and rules still apply.

Following the 1998 publication of the

International Standardization Organization/

International Electrotechnical Commission (ISO/

IEC) functional size measurement framework

standard ISO/IEC 14143-1: Concepts of

Functional Size Measurement (FSM), et al,

IFPUG’s Function Point Analysis method became

the first ISO/IEC standardized Functional Size

106 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Measurement Method: ISO/IEC 20926, of which

the current instantiation is known as ISO/IEC

20926: IFPUG Functional Size Measurement

Method version 4.3.1.

Over the years, the function point methodology

has matured and is now codified into the ISO/IEC

standard (30 pages) supported by a formal

counting practices manual (CPM) with several

hundred pages of terms, application guidelines,

and examples of practical implementation FP

counts.

Today, Functional Size Measurement (FSM) is

well accepted (by the International Cost

Estimating and Analysis Association (ICEAA) and

other leading software cost estimating experts

within the US government and internationally),

that software size is a main driver of software

development cost and schedule. Additionally, as

more organizations cope with tighter Information

Technology (IT) budgets, coupled with increases

in project overruns and failures, there is a major

need to develop better, fact-based, and reliable

software estimates. While IFPUG FPA holds

promise to revolutionize the software cost

estimating industry due to its technology-

independent approach to software sizing, there

are a number of barriers to widespread adoption.

These include the investment of time and

resources to properly train analysts to implement

function point-based estimating, and the

challenge of applying function point counting

rules to early requirements, (which is all that is

available when the cost and schedule estimates

are needed.)

The emergence of Simple Function Points

(SFP)

For some of the reasons stated above, as well as

European market demands for functional-size-

based estimates from early requirements

documents, a group of Italian researchers, led by

Dr. Roberto Meli, set out to develop a simplified

approach to functional size measurement,

specifically designed to work with high-level

software requirements. In 2009, Meli et all

debuted their Early and Quick Function Point

method (E&Q FP), based on the IFPUG method.

E&Q FP replaced the detailed IFPUG FP steps of

function identification and complexity with a

more generic and simplified FP scoring system

thereby reducing the dependence on detailed

software requirements (such as the number of

data fields or files involved in countable

components) and enabled quicker functional size

estimates. E&Q FP also allowed analysts to apply

the traditional IFPUG formal counting rules when

such details were available.

E&Q FP methodology eventually evolved into the

Simple Function Point method (SiFP) in 2010 and

was subsequently acquired by the IFPUG in 2019.

In October 2021, the IFPUG standardized the

Simple Function Point terminology and formally

released IFPUG Simple Function Points (SFP)

version 2.1.

SFP simplifies the traditional IFPUG FP method

by simplifying the functional size measurement

process to the assessment of two IFPUG-

compatible base functional components:

Elementary Processes (EP) and Data Groups

(DG), each with a single function point value: 4.6

FP for EPs and 7 for DGs. As such, SFP eliminates

the traditional IFPUG FP steps of determining the

primary intent, identify and categorize five

distinct types of functions, and the subsequent

step of categorizing them based on their relative

complexity (low, average, or high) before

assigning function point values.

Currently, the authors are participating in the full

rollout and development of formal IFPUG SFP

training and an accompanying SFP-based

certification program.

Functional Size Concepts and Terminology

Both IFPUG FP and IFPUG FP use the same

concepts and definitions pertaining to functional

size measurement and functional size. This

107 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

section provides an overview of salient terms for

readers unfamiliar with this software sizing

approach.

There are a few key terms and definitions

applicable when discussing IFPUG FP and IFPUG

SFP. Note: All terms and definitions are in

accordance with the IFPUG Counting Practices

Manual (CPM) version 4.3.1 and the Simple

Function Point (SFP) Manual version 2.1. Those

taken directly from the official IFPUG documents

are included in italics below.

According to the IFPUG CPM, functional size is

the “measure of the functionality that a

<software> application provides to the user,

determined by the application function point

count.” (IFPUG, 2010). Functionality or functions,

in turn, are the user specified functions or

business practices and procedures that the

software performs, as specified by the

Functional User Requirements (FUR).

Functional User Requirements (FUR) - A sub-set

of the user requirements; requirements that

describe what the software shall do, in terms of

tasks and services. FUR are those requirements

that describe what the software will do: for

example, what data to store, what reports to

produce, which data to display, what information

to send to other systems, to name a few.

Functional size measurement (FSM) is a

methodological approach to determining the

Functional Size from evaluating a software’s FUR

and assigning a specified number of function

points to each.

Note that FUR is distinct from, and should not be

mistaken for, other types of software

requirements: technical, quality, or non-

functional requirements (NFR), that describe

other aspects of the software including how the

software must perform (NFR), the quality of the

software (also NFR), the development

environment (technical) or the programming

language. A few further examples of software

requirements that are NOT functional

requirements include: the hardware or hosting

platform(s), quality requirements, response time

(to meet service level agreements), data capacity,

industry or organizational standards and policies,

and processing loads. Many of these

requirements can be measured using a different

methodology and units of measure, such as the

IFPUG Software Non-Functional Assessment

Process (SNAP) and associated SNAP points.

(Application or software) Boundary - The

boundary is a conceptual interface between the

software under study and its users.

User - A user is any person or thing that

communicates or interacts with the software at

any time. A user could be a physical person, other

software or hardware, or anything that sends or

receives data that crosses the software’s

application boundary.

Elementary process (EP) - “An Elementary

Process is the smallest unit of activity, which is

meaningful to the user, that constitutes a complete

transaction, it is self-contained and leaves the

business of the application being measured in a

consistent state”. The term transaction here does

not mean a physical collection of software

instructions grouped according to a technical

criterium (a Non-Functional Requirement). An

elementary process is, instead, a logical

aggregation of processing steps which is

meaningful from a logical user perspective, and it

is fulfilling a Functional Requirement.

Logical file (LF) “A Logical File represents

functionality provided to the user to meet internal

and external data storage requirements. It is a user

recognizable group of logically related data or

control information maintained and/or referred

within the boundary of the application being

measured.” The term file here does not mean

physical file or table. In this case, file refers to a

logically related group of data and not the physical

implementation of those groups of data.

Additionally for the formal IFPUG FP

methodology, the following definitions apply:

108 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

An internal logical file (ILF) is a user

recognizable group of logically related data or

control information maintained within the

boundary of the application being measured. The

primary intent of an ILF is to hold data maintained

through one or more elementary processes of the

application being measured.

An external interface file (EIF) is a user

recognizable group of logically related data or

control information, which is referenced by the

application being measured, but which is

maintained within the boundary of another

application. The primary intent of an EIF is to hold

data referenced through one or more elementary

processes within the boundary of the application

measured. This means an EIF counted for an

application must be in an ILF in another

application.

An external input (EI) is an elementary process

that processes Data or control information sent

from outside the boundary. The primary intent of

an EI is to maintain one or more ILFs and/or to

alter the behavior of the system.

An external output (EO) is an elementary process

that sends data or control information outside the

application’s boundary and includes additional

processing beyond that of an external inquiry. The

primary intent of an external output is to present

information to a user through processing logic

other than or in addition to the retrieval of data or

control information. The processing logic must

contain at least one mathematical formula or

calculation, create derived data, maintain one or

more ILFs, and/or alter the behavior of the system.

An external inquiry (EQ) is an elementary process

that sends data or control information outside the

boundary. The primary intent of an external

inquiry is to present information to a user through

the retrieval of data or control information. The

processing logic contains no mathematical formula

or calculation and creates no derived data. No ILF

is maintained during the processing, nor is the

behavior of the system altered.

Data Element Type (DET) - A unique, user

recognizable, non-repeated attribute.

File Type Referenced (FTR) - A data function read

and/or maintained by a transactional function.

Record Element Type (RET) - A user recognizable

sub-group of data element types within a data

function

Evolution of Simple Function Points (SFP)

With the initial introduction of function points in

the mid-and late1980’s, many software

development organizations, who had been

struggling with delivering high fidelity software

estimates and metrics using SLOC, were quick to

adopt the new approach to software sizing based

on the functionality provided to its users. There

were adjustments made to the methodology in the

1990’s and early 2000’s resulting in new versions

of the counting practices manual to address issues

and concerns users had in the application of the

rules. Additionally, the implementation of non-

mainframe software platforms provided

challenges to applying the rules, in particular

interpretation of the application boundary.

However, with the release of version 4.1 of the

CPM in 1996 the rule set was stabilized.

While IFPUG worked to address shortfalls in the

process, there were still challenges with

developing function point counts when the

requirements were not detailed and the ability to

identify key components such as DETS or FTRs

was not possible. There were also claims (false)

that the use of function points was not possible

until detailed design requirements were available,

function points could not be counted until the

software was in production, or that certain

platforms, application types, or some software

development methodologies could not be

counted.

The assertions, mostly incorrect, did demand that

there be a way to address the concerns around

lack of details needed to properly identify and

109 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

classify functions, particularly in the early phase

of software development. IFPUG and others

promulgated differing approaches which

primarily consisted of assuming the average

complexity for all functions.

In 2007, Data Processing Organization (DPO) in

Italy introduced the more refined concept of

Early and Quick Function Points (E&Q FP). Based

on the IFPUG methodology, they replaced the

“assume average complicity” concept with a more

refined approach. While IFPUG-based, the need

for detailed requirements was not necessary, the

analyst is still required to have a reasonable

amount of detail in the requirements to properly

discern which of the various levels of aggregation

is appropriate as well as which functional type it

is, which correlates highly with the IFPUG

functions.

The range of the function sizes used are

determined based on the aggregation level

employed. For 1st aggregation level it uses the

traditional function point sizes and ranges from 3

FP to 15 FP. The 2nd aggregation level ranges

from 4.0 to 8.1 FP, the 3rd aggregation level from

14.1 to 101.8 FP, and the 4th aggregation level

spans 111.5 to 617.4 FP. See appendix A for E&Q

FP aggregation levels and sizing table.

While the E&Q FP approach provided a

mechanism for counting function points based on

the level of detail of the functional user

requirements, including a way to count FP where

the FURs were at a high level, some function

point analysts still had difficulty with

determining how to count to the appropriate

level of size, aggregation, and determining the

appropriate sizes for Typical Processes (TP),

General Processes (GP), General Data Groups

(GDG) and Macro Processes (MP). Given the

ranges of these functions, misclassification could

still lead analysts to over- or under-counting the

software size.

This led Dr. Meli to further refine and simplify the

methodology and develop Simple Function Points

(SFP). The method approximates the IFPUG

function point methodology but does not require

the identification of DETS, RETS, or FTRs and

consists of only two types of functions:

Elementary Process (EP) replacing EI, EO, and EQ

and Logical File (LF) replacing ILF and EIF.

IFPUG FP and IFPUG SFP – Similarities and

Differences

The SFP concept embraces the same concepts and

definitions that the traditional IFPUG method

does with regards to the definition of boundary,

functional and technical requirements,

maintenance, enhancement, user, logical file, and

elementary process but removes the need for the

analyst to identify and classify the different

transactional and data function types into EI, EO,

EQ, ILF and EIF.

Rather, in SFP, functional user requirements are

identified and classified as transactional

Elementary Process (EP) functions or logical

(data) file (LF) functions. SFP also eliminates the

complexity rating of each function (as Low,

Average or High) based on their component

range of DETS, FTRS or RETS. This omittance

allows for the functional size to be quantified

more easily based on high-level, not-yet-detailed

functional requirements, and also speeds up the

assessment process by eliminating the need to

assess the functionality based on the various

transaction and date types, and their component

DETS, FTRS and RETS.

When to use IFPUG SFP vs IFPUG FP

The determination of which method to use can be

influenced by a number of factors: skill level;

expertise and training of the analyst; fidelity and

availability of detailed functional requirements;

and the business need for the count. It is always

advisable, when a count is being performed that

the analyst(s) conducting the count are properly

trained and preferably IFPUG certified, regardless

110 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Table 1: IFPUG FP compared to IFPUG SFP

Concept IFPUG Traditional FP IFPUG SFP

IFPUG standardized glossary Yes Yes, same

Intent to measure functional size
based on FUR

Yes Yes, same

Method owned by IFPUG Yes Yes

IFPUG FP measurement steps: 1.
Gather available documentation
2. Purpose/scope/boundary,
identify FUR
3a. Measure data functions
3b. Measure transactional
functions
4. Calculate functional size
5. Document and report

Yes, but steps 3a and 3b involve
additional sub-steps:
subclassification into 3 types of
transactional functions and 2 types
of data functions, and a complexity
classification (into Low, Average, or
High) to get FP values

Yes

Base functional components (BFC):
transactional functions and data
functions

Yes: Transactional functions are
subdivided into EI, EO, EQ, and
Data functions are subdivided into
ILF, EIF

Yes: Transactional functions are
called “Elementary Processes” and
Data Functions are called “Logical
Files”

Number of different FP values
allocated across function types

3 FP values allocated as Low,
Average or High across 5 function
types (total of 8 different values)

2 SFP values allocated, one each to
two function types

Range of FP values by category Transactional functions are worth
between 3 and 7 FP depending on
type and complexity. Logical files
are worth 7 to 15 FP depending on
type and relative complexity

All transactional functions are
considered to be EP and assigned
4.6 SFP. All data functions are
considered to be logical files and
assigned 7 SFP

Unit of measure Function Points (FP) Simple Function Points (SFP)

Convertibility 1 FP = 1 SFP 1 SFP = 1 FP

of method used. Having a count performed by

untrained or poorly trained analysts will likely

result in a function point count significantly over-

or under-counted. Ideally, the analyst is a

Certified Function Point Specialist (CFPS) or

Certified Function Point Practitioner (CFPP).

While IFPUG currently does not have training or

certification available for the SFP methodology, a

task force has been formed and current plans are

to deliver these by the end of 2023.

If the analyst(s) is/are not trained then it is

advisable, regardless of the phase of the project

or requirements state, to use the SFP method.

Likewise, if the requirements and supporting

documentation (Entity Relationship Diagrams

(ERD), Data Schema, Interface Requirements

Documents (IRD)) are not defined to the point

where DETS, FTRS or RETS can be confidently

identified, SFP should be used. Typically, this is

the case early in the software development

lifecycle such as at the proposal or project

definition phase. If there are cost or time

constraints, or there is only a need for a Rough

Order of Magnitude (ROM) estimate, then the SFP

method can be used. If the sizing will be updated

as the project progresses throughout the life

cycle, it is recommended – when there are

sufficient details available – to use the traditional

IFPUG method; particularly, if doing a baseline or

application count.

Where there are trained analysts, sufficiently

detailed requirements, other documentation

111 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

available and sufficient time and resources, it is

recommended to use the traditional IFPUG

Function Point methodology. It is advisable, as

well, to use the traditional method when a high

degree of accuracy and fidelity for the sizing and

estimate are required.

Can IFPUG FP or IFPUG SFP be used to Size

Agile Software Development?

With regards to Agile, DevOps, and other non-

waterfall development methodologies and

frameworks, there is a misconception that

function points cannot be used -- either SFP or

traditional IFPUG. In addition to function points

being language, platform, and technology

agnostic, they are also agnostic to development

methodology. It is likely the requirements,

typically documented as use cases in the Agile

world, are not of sufficient detail; The IFPUG SFP

method can be used to size product backlogs, use

cases, epics and features. Functional size

measurement provides the advantages of using

objective rule-based sizing over the subjective

sizing approaches typically employed in Agile

software development, such as story point

estimations. As a standardized unit of measure,

function points are particularly useful for

providing more accurate metrics such as sprint

velocity, productivity, and cost/FP.

Dos and Don’ts of Functional Size estimation

(using IFPUG FP or IFPUG SFP)

There may be various circumstances which

determine the function point sizing method used

by the practitioner, but regardless of whether

simple function points or traditional IFPUG

function points are used, the following provide

guidance on the dos and don’ts of function point

analysis:

Do:

• Use properly trained analysts, if at all
possible, even if it requires hiring an outside
analyst

• Properly document the function point count
and all source documentation

• Use traditional IFPUG function points if a high
degree of accuracy in sizing is required for
estimating or legal reasons and there are
sufficiently detailed requirements to support
it

• Use SFP when it is necessary to develop a
quick sizing estimate with little
documentation available

Don’t:

• Use SFP just because it is easier or quicker;
make sure that it will also meet other
business needs for the count

• Use SFP if using a parametric estimating tool
to develop cost and schedule estimates as
none currently on the market support native
SFP sizing

• Don’t use traditional IFPUG function point
sizing when there is limited time or lack of
resources to properly conduct the count

• If sizing a waterfall method project and the

early phase sizing estimates are done using
SFP, it is recommended to transition to
traditional IFPUG function points sizing when
available documentation becomes available.

• Depending on the business need, it is not
recommended to use SFP for application
counts, because all of the prerequisite details
to do a formal IFPUG FP count should be
available and known.

Example Case Study to Demonstrate

Functional Size Estimation

Consider: We have a high-level CONOPS (Concept

of Operations) document that outlines the

following hypothetical functional requirements

for a simple online book sales system:

a. Create, read, update, delete (CRUD), and store
customer records.

b. System administrator functions to create,
read, update, delete (CRUD), and store book
catalog entries for available books.

112 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

c. Customers can display and browse book
catalog by author or title.

d. Customers can select and see details about an
individual book.

e. Customers can create an order for one or
more books by selecting them from the
catalog and placing them in a shopping cart,
saved as an order.

f. The system will display order summary with
the total amount calculated from the prices of
all books.

g. Customers can complete their order by
paying with a credit card.

h. Software will generate an order summary to
the customer.

i. Software will generate an order request to
the sales staff at the store.

Table 2 presents the high-level summary of using

both IFPUG FP (assuming all functions are

average complexity) and IFPUG SFP. The total

over the entire case study came out to be close

for the IFPUG avg FP estimate and the IFPUG SFP

estimate, respectively being 90 FP and 93 SFP. If

there were more detailed requirements, such as

complex reports, that would be scored as a high

complexity EO (External output), there would be

a larger variation between the methods because

the value of a H EO is 7 FP versus the IFPUG SFP

single EP score of 4.6 SFP.

Note that the following acronyms are used in

Table 2:

For IFPUG avg (average) functions:

• A EI or A EQ= average External Input or
average External Query worth 4 FP each

• A EO = average External Output worth 5 FP

• A ILF = average complexity Internal Logical
File worth 10 FP

For IFPUG Simple Function Point (SFP)

functions:

• EP = elementary process worth 4.6 SFP

• LF = logical file worth 7 SFP

Functional Requirement IFPUG avg
functions

IFPUG FP
value

IFPUG SFP
functions

IFPUG SFP
value

CRUD, store customer records. 3A EI, A EQ
1A ILF

26 FP 4 EP,
1 LF

25.4 SFP

CRUD, store book catalog 3A EI, A EQ
1A ILF

26 FP 4 EP,
1 LF

25.4 SFP

Display books by author or title 1A EQ 4 FP 1 EP 4.6 SFP

Select and display book details 1A EQ 4 FP 1 EP 4.6 SFP

Select books to create order 1A EI,
1A ILF

14 FP 1 EP,
1 LF

11.6 SFP

Display order summary (calcs) 1A EO 5 FP 1 EP 4.6 SFP

Pay for order with credit card 1A EI 4 FP 1 EP 4.6 SFP

Order summary to customer 1A EO 5 FP 1 EP 4.6 SFP

Order request to sales staff 1A EO 5 FP 1 EP 4.6 SFP

TOTAL 8A EI,
3A EO,
4A EQ,
3A ILF

93 FP 15 EP,
3 LF

90 SFP

Table 2: Comparison of IFPUG FP (avg) and IFPUG SFP for CONOPS Case Study

113 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Conclusion

The IFPUG function point methodology is a tried-

and-true software sizing method, recognized as

an ISO/IEC Functional Size Measurement

standard, and is especially suitable to sizing

software when detailed functional requirements

are known. The evolution of the Simple Function

Point methodology (IFPUG SFP V2.1) presents a

simplified approach to functional sizing that is

especially useful for early estimation when

functional requirement details are not yet

specified or available. IFPUG SFP facilitates using

IFPUG FP concepts when conditions and

circumstances warrant the use of a rules-based

sizing method, while simultaneously providing

one that can be readily used quickly for high-level

requirements. IFPUG SFP provides such a

method, in lieu of, but true to IFPUG FP, with the

added benefits that it is easier to learn and

provides a reasonable level of accuracy in a more

timely and efficient manner than using the formal

IFPUG FP methodology.

Appendix A

Early and Quick Function Point Aggregation Levels and Values (DPO):

Table 3: Early and Quick 1st level aggregation (DPO)2

BFC IFPUG E&QFP components

ILF

ILFL – low

ILFA – average

ILFH – high

EIF

EIFL – low

EIFA – average

EIFH – high

BFC IFPUG E&QFP components

EI

EIL - EI low

EIA - EI average

EIH - EI high

EQ

EQL - EQ low

EQA - EQ average

EQH - EQ high

EO

EOL - EO low

EOA - EO average

EOH - EO high

114 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

GEI – Generic EI EI-type process with undetectable level of complexity.

GEO – Generic EO EO-type process with undetectable level of complexity.

GEQ – Generic EQ EQ-type process with undetectable level of complexity.

UGO - Unspecified Generic Output (EO/EQ) “doubtful” or “uncertain” output process for which

there are no details available to differentiate between EO and EQ.

UGEP - Unspecified Generic Elementary Process (EI/EO/EQ) “doubtful” or “uncertain” elementary

process for which there are no details available to single out the primary goal, namely the presence

of EI, un EO or u n EQ.

GILF – Generic ILF Sets of data recognizable by users as ILF-type of an uncertain complexity

GEIF - Generic EIF Sets of data recognizable by users as EIF-type of an uncertain complexity.

UGDG - Unspecified Generic Data Group Unspecified logical file (either ILF or EIF) of uncertain

complexity.

Table 4: Early and Quick 2nd level aggregation (DPO)3

If less mature requirements are available, then the analyst can genericize the functions to the 2nd

aggregation level:

Transactions:

classified as UEP - Unclassified Elementary Process:

115 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Transactions

When it is not possible to accurately identify a specific UBFC or the precise amount of UBFC that makes up a

specific software component it is possible to use a 3rd level component.

 Typical Process (TP) It consists of a set of four typical functional processes: Insert, Edit, Delete, Display a

record data, recognised as CRUD – (Create, Read, Update & Delete) and generally centred around a specific

data store. Normally it corresponds to the general definition “Management of a data store”, “Management of

…”.

When detectable, the Typical Process helps save measurement time without losing out in accuracy in the

four base components shortlisted.

There are three TP classes:

TPS – Typical Process - Small: CRUD

TPM – Typical Process - Medium: CRUD + List (EQ)

TPL – Typical Process - Large: CRUD + List (EQ) + Report (EO)

General Process (GP)

It consists of a general set of Unclassified Elementary Process (UEP). If they fail to be detected with

accuracy a General Process component is detected instead.

It is a more general type of “unspecified” BFC aggregation which differs from CRUD.

There are three different GP components that depend on the amount of UEP put together.

GPS – General Process - Small: 6 -10 UEP’s

GPM– General Process - Medium: 11 -15 UEP’s

GPL– General Process - Large: 16 -20 UEP’s

Data

General Data Group (GDG) For the data component, three General Data Group (GDG) typologies are

identified at three different aggregation levels which depend on the amount of ULF taken into account in

the GDG, in particular:

GDGS - General Data Group - Small: 2-4 ULF

GDGM - General Data Group - Medium: 5-8 ULF

GDGL - General Data Group - Large : 9-13 ULF

Table 5: Early and Quick FP 3rd level aggregation (DPO)4

116 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Group of GP’s (General Processes)

The fourth level of aggregation applies when user requirements are such as to be described at a summary

level and measured as a functional area of a medium or large application. This level of aggregation can be

used for subsets of large and functionally complex applications.

Aggregations are functional components of the General Process type (third aggregation level) that are

grouped together as MP-type components (MP= macro process).

Transactions

MP – Macro Process If the level of detail is insufficient, instead of the numerous General Processes (GP) it is

possible to detect a Macro Process (MP) of small, medium and large scale.

MPS – Macro Process – Small: 2-4 GP’s

MPM – Macro Process – Medium: 5-7 GP’s

MPL – Macro Process – Large: 8-10 GP’s

A Macro Process can amount to a large system segment, a sub-system or even an entire small scale

application.

Table 6: Early and Quick FP 4th level aggregation (DPO)5

Type of functional

component
Function Type Min

ML

most

likely

Max

Transactions

Base

Functional
Component

(IFPUG)

EIL - EI low 3,0 3,0 3,0

EIA - EI average 4,0 4,0 4,0

EIH - EI high 6,0 6,0 6,0

EQL - EQ low 3,0 3,0 3,0

EQA - EQ average 4,0 4,0 4,0

EQH - EQ high 6,0 6,0 6,0

EOL - EO low 4,0 4,0 4,0

EOA - EO average 5,0 5,0 5,0

EOH - EO high 7,0 7,0 7,0

Data

Base

Functional
Component

(IFPUG)

ILFL - low 7,0 7,0 7,0

ILFM - medium 10,0 10,0 10,0

ILFH - high 15,0 15,0 15,0

EIFL - low 5,0 5,0 5,0

EIFM - medium 7,0 7,0 7,0

EIFH - high 10,0 10,0 10,0

1st aggregation

level:

components and

values

117 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Type of

functional

component

Function Type Min

ML

most

likely

Max

Transactions

UEP

(Unclassified
Elementary

Process)

GEI - Generic EI 4,0 4,2 4,4

GEQ - Generic EQ 3,7 3,9 4,1

GEO - Generic EO 4,9 5,2 5,4

UGO - Unspecified Generic
Output (EQ/EO)

4,1 4,6 5,0

UGEP - Unspecified Generic
Elementary Process
(EI/EQ/EO)

4,3 4,6 4,8

Data

ULF

(Unclassified
Logical

File)

GILF-Generic ILF 7,4 7,7 8,1

GEIF-Generic EIF 5,2 5,4 5,7

UGDG – Unspecified Generic
Data Group

6,4 7,0 7,8

2nd aggregation

level:

components and

values

Table 7: Early and Quick FP Range Values by Aggregation Level (DPO)6

Type of

functional

component

Function Type Min

ML

most

likely

Max

MP
Macro Process

MPS – small
2-4 Generic GP’s

111,5 171,5 231,5

MPM – medium
5-7 Generic GP’s

185,8 285,9 385,9

MPL - large
8-10 Generic GP’s

297,3 457,4 617,4

3rd aggregation

level:

components and

values

4th aggregation

level:

components and

values

Data

GDG
General

Data
Group

GDGS – small
2-4 ULF

15,0 21,4 27,8

GDGM – medium
5-8 ULF

32,4 46,3 60,2

GDGL – large
9-13 ULF

54,8 78,3 101,8

Type of

functional

component

Function Type Min

ML

most

likely

Max

Transactions

TP
Typical Process

TPS – small (CRUD) 14,1 16,5 19,0

TPM – medium (CRUD+List) 17,9 21,1 24,3

TPL – large
(CRUD+List+Report)

22,3 26,3 30,2

Data

GP
General Process

GPS – small
6-10 UEP’s

26,4 35,2 44,0

GPM – medium
11-15 UEP’s

42,9 57,2 71,5

GPL – large
16-20 UEP’s

59,4 79,2 98,9

118 Journal of Cost Analysis and Parametrics: Volume 11, Issue 1. April 2023

Simplifying Software Sizing with Simple Function Points Carol Dekkers, Dan French

Carol Dekkers is a management consultant and president of Quality Plus Technologies, specializing in
workings with organizations who want to keep their promises to their clients through realistic, data-founded
estimates. In 2022, she was named the ICEAA 2022 Educator of the Year for her work as the lead author for
soon-to-be-released Software Cost Estimating Body of Knowledge (CEBoK-S).

She holds a BSc in Mechanical Engineering and is an IFPUG Certified Function Point Specialist (Fellow), a PMP,
Certified Scrum Master and a P.Eng. (Canada). Ms. Dekkers has authored several textbooks on functional size
measurement (function Points) and project management and is a frequent presenter and instructor on these
topics internationally. She currently consults under contract to several U.S. federal government agencies and to
the private sector. In Feb 2023, Ms. Dekkers was named one of Consulting Magazine’s 2023 Global Leaders in
Consulting for her leadership in pro bono for her contributions to the IFPUG, ASQ, PMI, and the International
Organization for Standardization (ISO).

Daniel (Dan) B. French has twenty years of experience in a variety of IT roles including analyst, developer,
tester, project management, software metrics and software estimation. He has developed CMMi and ISO
compliant process improvement and software estimation processes.

 Dan holds a B.S. in Economics from Virginia Tech and holds certification as a Lifetime CFPS, PMP and CSM. He
recently served as the Certification Director on the IPFUG Board of Directors and is currently the chair.
Previously he served as the Chair of the Functional Software Sizing Committee (FSSC). He’s authored numerous
white papers/presentations on software metrics, Agile, and estimation.

International Cost Estimating & Analysis Association

4115 Annandale Road, Suite 306 | Annandale, VA 22003

703-642-3090 | iceaa@iceaaonline.org

The International Cost Estimating and Analysis Association is a 501(c)(6) international non-profit

organization dedicated to advancing, encouraging, promoting and enhancing the profession of cost

estimating and analysis, through the use of parametrics and other data-driven techniques.

www.iceaaonline.com

Submissions:

Prior to writing or sending your manuscripts to us, please reference the

JCAP submission guidelines found at

www.iceaaonline.com/publications/jcap-submission

Kindly send your submissions and/or any correspondence to

JCAP.Editor@gmail.com

https://www.iceaaonline.com/publications/jcap-submission/
mailto:JCAP.Editor@gmail.com

