

What's the Buzz about CEBoK-S?

Presented by Carol Dekkers, SCEC and Kevin McKeel, SCEC

Quality Plus Technologies, Inc.

LOGAPPS

Nov 21, 2024

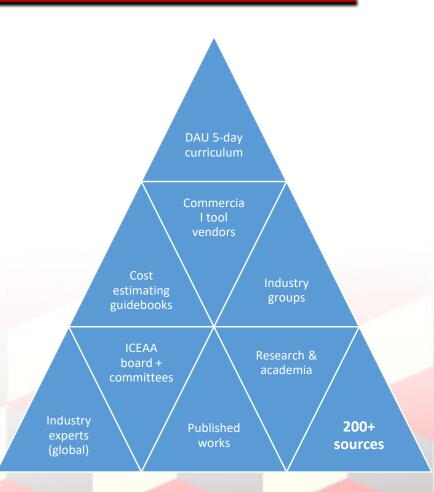
Introduction

Carol Dekkers

- 20+ years experience in software development, estimation and measurement, ISO standards development, project management, agile methods (Heart of Agile leadership)
- Lead author of CEBoK-S (ICEAA 2022 Educator of the Year)
- Holds SCEC, PMP, CFPS (Fellow), CSM (current), P.Eng. (Canada) designations
- Independent consultant, author, speaker, instructor (global clients)
- Frequent speaker at ICEAA, IT CAST, IFPUG, Project Management, agile software development conferences
- Email: dekkers@qualityplustech.com

Introduction

Kevin McKeel


- 20+ years experience as Software Estimator and functional size measurement SME
- Certified Cost Estimator/Analyst (CCEA) since 2002
- Holds Software Cost Estimating Certification (SCEC)-since Dec 2024
- 2021 ICEAA Technical Achievement Award recipient
- SAFe Architect
- Frequent speaker at ICEAA, IT CAST and IT Project Management conferences on software estimation, NLP and AI
- Email: kevin.mckeel@logapps.com

Agenda

- Background to CEBoK-S
- Cost Estimating Body of Knowledge for Software (CEBoK-S)
 - Overview
 - Curriculum
- Software Cost Estimating Certification (SCEC)
 - Process
 - Benefits of Certification
- Q&A

CEBoK-S Background

- Specialized extension of ICEAA Cost Estimating Body of Knowledge (CEBoK®) for software
- ICEAA + industry collaborative development effort over 10 years
 - 200+ sources
 - New content (updated/globalized/enhanced) for software cost estimating
- Specialized extension of ICEAA Cost Estimating Body of Knowledge (CEBoK[®]) for software
- An evolving body of knowledge to meet changing industry needs
- Special thanks to Carol Dekkers, Lead Author of CEBoK-S. Much of this content obtained from her 2023 & 2024 ICEAA Workshop presentations

CEBoK-S in 30 seconds

- Recognizes that software estimation is non-trivial and of growing importance as software cost can dominate software intensive programs
- "Encyclopedia of best practices" consolidated into nine easy-to-digest PPT® modules that extend CEBoK® core concepts to software
- Provides guidance to estimate a range of software development efforts depending on what is being built and how
- Equips the cost professional with software estimating techniques and tips that will increase their software estimating skills and proficiency
- A comprehensive package of independent lessons that provide a set of processes, approaches, considerations, equations, and resources useful for preparing to take the certification exam, and as an on-the-job reference/usage
- Supports our new formal certification: ICEAA Software Cost Estimating Certification (SCEC)

CEBoK-S Provisions

CEBoK-S does:

 Provide guidance for the experienced cost estimator to estimate the costs and schedule of developing, procuring and/or sustaining the software involved in software intensive programs.

CEBoK-S does NOT:

- Endorse any particular method of software sizing, software development methodology, software estimating methodology or commercial tool vendor;
- **Prescribe** the essential considerations in software cost estimating however, it provides guidance.

Adapted from the 2020 CEBoK-S Terms of Reference

For whom is CEBoK-S intended?

- Members of software acquisition communities (globally)
 - Acquisition professionals responsible for cost oversight
 - Contracting Officers
- Estimators at Original Equipment Manufacturers (OEMs)
- Cost analysts who prepare for or validate/review software estimates prepared by, prime/sub contractors
- Consultants and finance-oriented professionals who prepare or validate/review software estimates for commercial organizations, consulting firms, C-suite executives, or FFRDCs
- Students or professors who want to advance their knowledge of software cost estimating

CEBoK-S content

Lesson 1: Introduction to Software Cost Estimating

Lesson 2: Software Development Paradigms

Lesson 3: Five-Step Estimation Process

Lesson 4: Estimating Custom Software Development

Lesson 5: Software Sustainment

Lesson 6: Procured Software

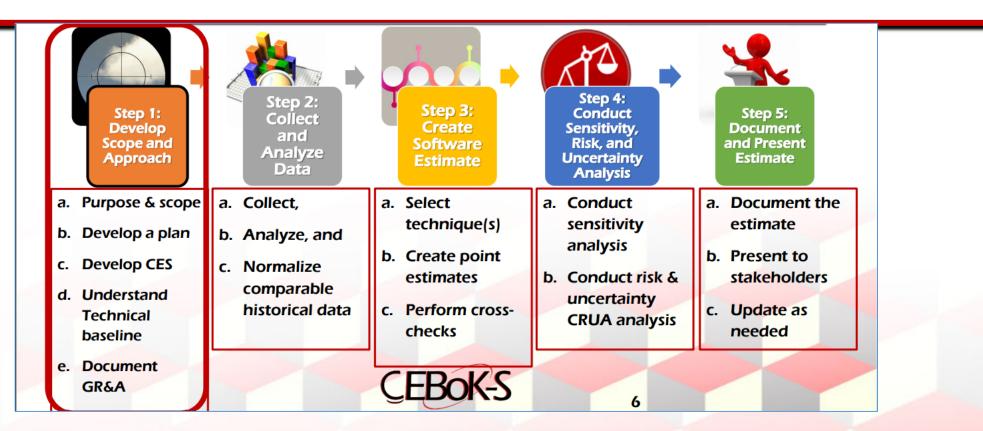
Lesson X: Software Size

Lesson Y: Productivity

Lesson Z: Commercial Estimation Models

CEBoK-S Terms

CEBoK-S Term	Definition	Examples	Synonym
Software Development Paradigm	"a set of assumptions, concepts, values, and practices that constitutes a way of viewing reality. In software development, a paradigm guides the way that developers view a given problem and organize the solution." ¹	Predictive or Plan-driven Agile or Change-driven	Software development approach
Software development method	A structured series of steps and activities to develop software within a given paradigm	Waterfall, Scrum, Kanban, SAFe, hybrid	Software development life cycle (SDLC)
Cost estimating model	Commercial parametric software estimating tool or the COCOMO II model	TruePlanning, SEER-SEM, SLIM, COCOMO II tools	Parametric tools or OTS (Off-The-Shelf) Models
Cost Element Structure (CES)	Specifically refers to the hierarchical decomposition of costs, product or end capability. Capability- oriented, generally following the WBS practice rules from the GAO guide ² . Estimates may be done at any level of the CES.	See lesson 3	Cost estimating structure CES (DAU), WBS (GAO) or WBS (CEBoK)
Cost estimating Technique	The specific estimating approach and equation(s) used to create a software cost estimate	Parametric, analogy, engineering build-up, extrapolation from actuals, expert opinion	Cost estimating methodology


Sample CEBoK-S content

Lesson 2: Software Development Paradigms

Code & fix	1990's Predictive moving towards agile		
Design-code-test- maintain	V-model Rapid application development	2001- today Agile/cha	inge-driven
Waterfall *	(RAD)	Kanban *	
Spiral *	Rational Unified Process (RUP) *	Scaled agile framework	
Incremental *	Dynamic Systems Development	(SAFe) *	
Evolutionary *	Method (DSDM)	Lean software developme	ent
-	Scrum *	DevOps / DevSecOps*	
	eXtreme programming (XP)	Scrumban	
	Object-Oriented (O-O)	Disciplined Agile Delivery	,
	Iterative *	(DAD) *	

- Important to understand software development processes and terminology and how paradigms may affect software cost and schedule
- Does not impact software size (different ways to build/deliver software products) but can impact productivity
- Introduces agile methodologies/frameworks including Dev/Sec/Ops

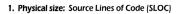
Lesson 3: 5-Step CEBoK-S Estimation Process

- Streamlined, comprehensive process combining GAO Cost Estimating and DAU processes
- Specific to custom software development CER/SER. Similar approach (with obvious modifications) for procured and hybrid software development efforts

Lesson 4: Estimating Custom Software Development

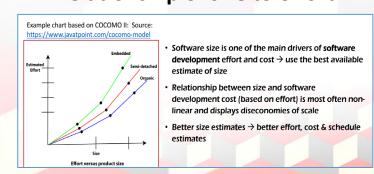
- Four fundamental software cost estimating techniques (Note: expert opinion not considered a primary estimating methodology)
- Case study examples of how to use and apply 5-step CEBoK-S

Technique	Approach	Cost (Effort) Equation	General form	Estimate size	Sizing units	Estimate Productivity directly?	Estimate Complexity & Capability directly?	Formula for productivity	Linear equation when
1. Parametric (based on derived CER)	Derive a CER	Effort = A*Size ^E	Non- linear	Yes	Any	No	No	1/(A * size ^(E-1))	E=1
2. Parametric (based on published CER)	Use published CER (COCOMO II) ²	Effort = 2.94*KESLOC ^E *EAF	Non- linear	Yes	KESLOC (modified for FP ¹)	No	Yes	1/(2.94* KESLOC ^{(E-1)*} EM)	E=1, and EM=A/2.94
3. Analogy	Productivity- based	Effort = A*Size	Linear	Yes	Any	Yes	No	1/A	Always
4. Wideband Delphi Expert Opinion	Solution WBS – based	Simple mean of individual expert estimates	Linear	Not necessary	N/A	N/A	N/A	N/A	Always


E = exponent on size representing the relative economies or diseconomies of scale, or constant returns to scale

EAF = Effort Adjustment Factor: Product of COCOMO II Effort Multipliers (EM) Size = Software size

Lesson X: Software Size

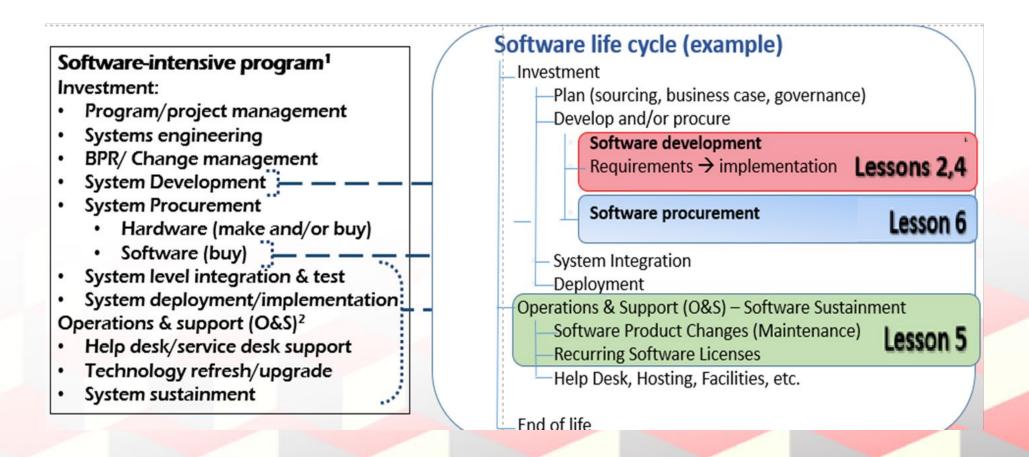

- Cost estimators need to understand:
 - Software size is a major cost driver
 - What are the types of software size and associated units of measure
 - Relationship of size to effort
 - What does the estimated size mean?
 - Scope of size estimate
 - Questions to ask experts
 - How size is a source of uncertainty
- No expectation for cost estimators to be(come) size experts!

Types of software size and units of measure

2. Functional Size

- A. International Function Point Users Group (IFPUG) Function Points (ISO/IEC 20926) **
- B. Nesma Function Points (ISO/IEC Standard ISO/IEC 24750) **
- C. Common Software Measurement International Consortium (COSMIC) Function Points (ISO/IEC Standard) **
- D. Simple Function points
- E. Object Points
- F. Use Case Points
- G. Requirements (Software Engineering Institute)

Relationship of size to effort


Lesson Z: Commercial Estimation Models

- Introduces four major commercial cost estimating software packages:
 - Non-exclusive (others available)
 - Each uses its own Parametric Cost Estimation (CER/SER) with own database(s)

Name	Developer	Selected Inputs	Selected Outputs	Key Advantages	Key Limitations
1. COCOMO II Web-tool	Dr. Barry Boehm, USC Center for Systems and Software Engineering http://softwarecost.org/ tools/COCOMO/	Development: Size (SLOC or Function Points), language, software scale drivers (5) and cost drivers (17), labor rate Maintenance: ESLOC annual change, maintenance duration, understanding (1- 50%),, unfamiliarity (0-1), labor rate	Development effort, (in person-months), schedule (calendar months), cost, staffing profile, acquisition phase and software effort distribution profiles Maintenance Effort (person months), annual maintenance cost, total maintenance cost	 Free Many OTS tools based on COCOMO equations Widely used/respected Transparent calculations Wide number of COCOMO II related extension models including COCOTS (COTS), COSYSMO (Systems Eng.) etc. 	 Subjective cost drivers, Calibration requires multiple dat sources Simplistic output No variation by domain No guarantee of support – models, tools, and research no longer on public website at University of Southern California
2. Galorath Inc. SEER for Software [®] (SEER-SEM [®])	Dan Galorath, Galorath Inc. http://galorath.com/pro ducts/software/SEER- Software-Cost- Estimation	Platform, Application, Reuse Scenario, Development Method and Development Standard. Size in SLOC, Function Points or a variety of other size metrics. Many detailed parameters describing the people, processes, and constraints on the project	Development effort (in person-months or dollars) and duration (in calendar months), staffing by month, delivered defects and defect density Maintenance effort and cost	Ability to calibrate model by "running it in reverse:" back into effective technology rating (ETR) through inputs of actual effort or costs; robust databases augmented with ISBSG D&E data. Knowledgeable customer support.	Large number of inputs requires tac knowledge of the software system Proprietary equations and data, (bu available to clients with non- disclosure agreements (NDAs)), license fees;,
3. Unison Cost Engineering : True Planning for Software	Unison Cost Engineering: https://www.unisonglob al.com/product- suites/cost- engineering/cost- engineering-models/	Size, Language, Application, Degree of Reuse, Phases, Complexity Factors	Development effort (in person-months or dollars) and duration (in calendar months)	Ability to calibrate model by "running it in reverse:" back into productivity factor through inputs of actual effort or costs, robust databases augmented by ISBSG D&E data. Knowledgeable customer support. Sensitivity analysis capability for all quantitative inputs that allows users to see in real time how a particular input influences the overall cost/effort of their current project in context	Large number of inputs requires tac knowledge of the software system. Proprietary equations and data, (bu available to clients with NDAs); license fees
4. QSM, Inc. SLIM-Estimate®	Larry Putnam, Senior, Quantitative Systems Management (QSM) http://www.qsm.com/to ols	Size (if non-SLOC, must enter conversion factor), Productivity Index, Solution Method (constrained vs. unconstrained)	Development effort (in person months), duration (in calendar months), cost, required peak staff, mean time to defect (MTTD), probability of completing project on time and under budget	Equations published in Larry Putnam, Sr. <i>Measures for Excellence</i> (1991). Ability to visualize where estimate falls relative to history, using robust historical database; ability to customize estimate to any degree of confidence along various dimensions. Knowledgeable customer support.	Flexibility in non-SLOC measures of size (a strength) is possible with customer-supplied conversion facto (productivity indices). Proprietary equations and data, (bu available to clients with NDAs); license fees

CEBoK-S coverage

• CEBoK-S provides guidance to estimate software acquisition and sustainment of the Software-intensive program work breakdown structure (WBS) as highlighted

SCEC (Software Cost Estimating Certification)

- SCEC exam candidates need at least two years of software costrelated experience and will need to purchase the CEBoK-S material to take the certification exam.
- CEBoK-S provides testable material for the SCEC (and is a great resource for):
 - Identifying best practices with software development and procurement effort and cost estimation, sustainment, and maintenance.
 - Estimating cost and schedule for software products, including custom development (agile, waterfall and hybrid methodologies), Commercial-Off the Shelf (COTS), Government Off-the Shelf (GOTS), software as a service (SaaS), and others.
 - Reviewing and validating 3rd party software size estimates, development costs, and sustainment and maintenance schedules.
 - QA Checklist
 - Covers Software Development (and Software Sustainment) cost and schedule estimating

Steps to SCEC Certification

- ICEAA SCEC Certification Application (2-year experience requirement)
- Base costs (payable to ICEAA):
 - \$595 CEBoK-S materials (\$745 non-members)
 - \$350 SCEC exam fee (\$515 non-members), \$150 Exam Re-Take
 - \$150 ICEAA 1-year membership
- SCEC Exam \rightarrow 60 multiple choice questions (70% threshold)
- 5-year certification, with ICEAA recertification process
- Helpful Links
 - https://www.iceaaonline.com/certification/
 - https://www.iceaaonline.com/application/
- Licensed training providers (trainer must be SCEC)
 - Logapps
 - Quality Plus Technologies, Inc.

Summary: CEBoK-S and SCEC Benefits

- Software → increasing impact on programs and thus in the cost estimation/acquisition world (\$\$\$B USD)
- Traditionally, software cost estimation "assumed" to be trivial → unnecessary consequences (litigation, cancellation, overruns, overoptimism, mistrust)
- CEBoK-S provides professional, proven, and relevant body of knowledge for cost estimators worldwide
- SCEC establishes basic knowledge of CEBoK-S
- Career Advancement

NEXT STEPS: CEBoK-S and SCEC Opportunities...

PURCHASE YOUR COPY OF CEBoK-S:

- Comprehensive reference materials
- Should be base knowledge for all software cost estimators

• COORDINATE CEBoK-S TRAINING AT YOUR COMPANY/AGENCY:

- Approximately 2.5 days of concentrated exam content review (all 9 modules) contact ICEAA
- BECOME AN SCEC (SOONER THAN LATER!):
 - Exam question bank is expanding \rightarrow exam complexity will increase
 - SCEC is available to everyone (new DAU certification limits participation)
- INCREASE THE VALUE OF YOUR CCEA/PCEA AND OUR PROFESSION:
 - A rising tide floats all boats! Spread the word about the value of professional, data-founded estimating

HELP TO CREATE SOFTWARE DEVELOPMENT SUCCESS:

- Professional, data-founded, software estimates → realistic contracts → on-time and on-budget deliveries
- VOLUNTEER:
 - ICEAA Software SIG seeks volunteers: curriculum and marketing

CEBoK-S Contributors

- Carol Dekkers, Quality Plus Technologies, Inc. Lead Author and Project Manager CEBoK-S
- Kevin Cincotta, MITRE and Dave Brown, Technomics Senior advisors and reviewers
- Rick Collins, Technomics ICEAA 2019-2021 President
- Megan Jones, ICEAA Executive Director
- ICEAA CEBoK-S Review Group (ISRG):
 - Jennifer Kirchhoffer Tecolote Research
 - Dr Wilson Rosa, US DHS CAD
 - Dan French Cobec Consulting, Inc.
 - Arlene Minkiewicz Unison Cost Eng.
 - Denise Nelson The Boeing Company

- Sanathanan Rajagopal Sirius Analysis
- Dr Christian Smart Galorath, Inc.
- Eric van der Vliet CGI
- Harold van Heeringen METRI Group
- Brian Glauser Unison Cost Eng. 22

Questions?